Real-time analysis of <i>δ</i><sup>13</sup>C- and <i>δ</i>D-CH<sub>4</sub> in ambient air with laser spectroscopy: method development and first intercomparison results
-
Published:2016-01-27
Issue:1
Volume:9
Page:263-280
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Eyer S., Tuzson B.ORCID, Popa M. E.ORCID, van der Veen C., Röckmann T.ORCID, Rothe M., Brand W. A., Fisher R., Lowry D.ORCID, Nisbet E. G., Brennwald M. S., Harris E.ORCID, Zellweger C., Emmenegger L.ORCID, Fischer H.ORCID, Mohn J.ORCID
Abstract
Abstract. In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference52 articles.
1. Beck, V., Chen, H., Gerbig, C., Bergamaschi, P., Bruhwiler, L., Houweling,
S., Röckmann, T., Kolle, O., Steinbach, J., Koch, T., Sapart, C. J., Van
Der Veen, C., Frankenberg, C., Andreae, M. O., Artaxo, P., Longo, K. M., and
Wofsy, S. C.: Methane airborne measurements and comparison to global models
during BARCA, J. Geophys. Res. Atmos., 117, D15310,
https://doi.org/10.1029/2011JD017345, 2012. 2. Bergamaschi, P., Schupp, M., and Harris, G. W.: High-precision direct
measurements of 13CH4/12CH4 and
12CH3D/12CH4 ratios in atmospheric methane sources by
means of a long-path tunable diode laser absorption spectro, Appl. Opt., 33, 7704–7716,
https://doi.org/10.1364/AO.33.007704, 1994. 3. Bergamaschi, P., Brenninkmeijer, C. a. M., Hahn, M., Röckmann, T.,
Scharffe, D. H., Crutzen, P. J., Elansky, N. F., Belikov, I. B., Trivett, N.
B. a., and Worthy, D. E. J.: Isotope analysis based source identification for
atmospheric CH4 and CO sampled across Russia using the Trans-Siberian
railroad, J. Geophys. Res., 103, 8227–8235, https://doi.org/10.1029/97JD03738, 1998a. 4. Bergamaschi, P., Lubina, C., Königstedt, R., Fischer, H., Veltkamp, A.
C., and Zwaagstra, O.: Stable isotopic signatures (δ13C ,
δD) of methane from European landfill sites, J. Geophys. Res., 103,
8251–8265, https://doi.org/10.1029/98JD00105, 1998b. 5. Bock, M., Schmitt, J., Behrens, M., Möller, L., Schneider, R., Sapart,
C., and Fischer, H.: A gas chromatography/pyrolysis/isotope ratio mass
spectrometry system for high-precision δD measurements of atmospheric
methane extracted from ice cores, Rapid Commun. Mass Spectrom., 24, 621–633,
https://doi.org/10.1002/rcm.4429, 2010.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|