Increasing the accuracy and temporal resolution of two-filter radon–222 measurements by correcting for the instrument response

Author:

Griffiths Alan D.ORCID,Chambers Scott D.ORCID,Williams Alastair G.ORCID,Werczynski Sylvester

Abstract

Abstract. Dual-flow-loop two-filter radon detectors have a slow time response, which can affect the interpretation of their output when making continuous observations of near-surface atmospheric radon concentrations. While concentrations are routinely reported hourly, a calibrated model of detector performance shows that ∼ 40 % of the signal arrives more than an hour after a radon pulse is delivered. After investigating several possible ways to correct for the detector's slow time response, we show that a Bayesian approach using a Markov chain Monte Carlo sampler is an effective method. After deconvolution, the detector's output is redistributed into the appropriate counting interval and a 10 min temporal resolution can be achieved under test conditions when the radon concentration is controlled. In the case of existing archived observations, collected under less ideal conditions, the data can be retrospectively reprocessed at 30 min resolution. In one case study, we demonstrate that a deconvolved radon time series was consistent with the following: measurements from a fast-response carbon dioxide monitor; grab samples from an aircraft; and a simple mixing height model. In another case study, during a period of stable nights and days with well-developed convective boundary layers, a bias of 18 % in the mean daily minimum radon concentration was eliminated by correcting for the instrument response.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3