Impact of biogenic secondary organic aerosol (SOA) loading on the molecular composition of wintertime PM2.5 in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry

Author:

Zhong Shujun,Chen Shuang,Deng JunjunORCID,Fan Yanbing,Zhang Qiang,Xie Qiaorong,Qi Yulin,Hu WeiORCID,Wu Libin,Li Xiaodong,Pavuluri Chandra MouliORCID,Zhu JialeiORCID,Wang Xin,Liu DiORCID,Pan XiaoleORCID,Sun YeleORCID,Wang Zifa,Xu Yisheng,Tong HaijieORCID,Su HangORCID,Cheng YafangORCID,Kawamura KimitakaORCID,Fu PingqingORCID

Abstract

Abstract. Biomass burning is one of the key sources of urban aerosols in the North China Plain, especially during winter, when the impact of secondary organic aerosols (SOAs) formed from biogenic volatile organic compounds (BVOCs) is generally considered to be minor. However, little is known about the influence of biogenic SOA loading on the molecular composition of wintertime organic aerosols. Here, we investigated the water-soluble organic compounds in fine particulate matter (PM2.5) from urban Tianjin by ultrahigh-resolution Fourier transform ion cyclotron resonanc mass spectrometry (FT-ICR MS). Our results show that most of the CHO and CHON compounds are derived from biomass burning which are poor in oxygen and contain aromatic rings that probably contribute to light-absorbing brown carbon (BrC) chromophores. Under moderate to high SOA-loading conditions, the nocturnal chemistry is more efficient than photooxidation to generate secondary CHO and CHON compounds with high oxygen content. Under low SOA loading, secondary CHO and CHON compounds with low oxygen content are mainly formed by photochemistry. Secondary CHO compounds are mainly derived from oxidation of monoterpenes. However, nocturnal chemistry may be more productive to sesquiterpene-derived CHON compounds. In contrast, the number- and intensity-weight of S-containing groups (CHOS and CHONS) increased significantly with the increase of biogenic SOA loading, which agrees with the fact that a majority of the S-containing groups are identified as organosulfates (OSs) and nitrooxy–organosulfates (nitrooxy–OSs) that are derived from the oxidation of BVOCs. Terpenes may be potential major contributors to organosulfates and nitrooxy–organosulfates. While the nocturnal chemistry is more beneficial to the formation of organosulfates and nitrooxy–organosulfates under low SOA loading. The SOA loading is an important factor that is associated with the oxidation degree, nitrate group content and chemodiversity of nitrooxy-organosulfates. Furthermore, our study suggests that the hydrolysis of nitrooxy-organosulfates is a possible pathway for the formation of organosulfates.

Funder

National Natural Science Foundation of China

Bureau of Science and Technology for Development, Chinese Academy of Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference86 articles.

1. Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009.

2. Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215–225, https://doi.org/10.5194/acp-11-215-2011, 2011.

3. Bianco, A., Deguillaume, L., Vaitilingom, M., Nicol, E., Baray, J. L., Chaumerliac, N., and Bridoux, M.: Molecular Characterization of Cloud Water Samples Collected at the Puy de Dome (France) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52, 10275–10285, https://doi.org/10.1021/acs.est.8b01964, 2018.

4. Brüggemann, M., Poulain, L., Held, A., Stelzer, T., Zuth, C., Richters, S., Mutzel, A., van Pinxteren, D., Iinuma, Y., Katkevica, S., Rabe, R., Herrmann, H., and Hoffmann, T.: Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh 2014 field study, Atmos. Chem. Phys., 17, 1453–1469, https://doi.org/10.5194/acp-17-1453-2017, 2017.

5. Brüggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H. Y., Otto, T., Schaefer, T., Poulain, L., Chan, M. N., and Herrmann, H.: Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance, Environ. Sci. Technol., 54, 3767–3782, https://doi.org/10.1021/acs.est.9b06751, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3