Experimental chemical budgets of OH, HO2, and RO2 radicals in rural air in western Germany during the JULIAC campaign 2019

Author:

Cho ChangminORCID,Fuchs HendrikORCID,Hofzumahaus AndreasORCID,Holland Frank,Bloss William J.ORCID,Bohn BirgerORCID,Dorn Hans-PeterORCID,Glowania MarvinORCID,Hohaus ThorstenORCID,Liu LuORCID,Monks Paul S.,Niether DoreenORCID,Rohrer Franz,Sommariva RobertoORCID,Tan ZhaofengORCID,Tillmann RalfORCID,Kiendler-Scharr Astrid,Wahner AndreasORCID,Novelli AnnaORCID

Abstract

Abstract. Photochemical processes in ambient air were studied using the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich, Germany. Ambient air was continuously drawn into the chamber through a 50 m high inlet line and passed through the chamber for 1 month in each season throughout 2019. The residence time of the air inside the chamber was about 1 h. As the research center is surrounded by a mixed deciduous forest and is located close to the city Jülich, the sampled air was influenced by both anthropogenic and biogenic emissions. Measurements of hydroxyl (OH), hydroperoxyl (HO2), and organic peroxy (RO2) radicals were achieved by a laser-induced fluorescence instrument. The radical measurements together with measurements of OH reactivity (kOH, the inverse of the OH lifetime) and a comprehensive set of trace gas concentrations and aerosol properties allowed for the investigation of the seasonal and diurnal variation of radical production and destruction pathways. In spring and summer periods, median OH concentrations reached 6 × 106 cm−3 at noon, and median concentrations of both HO2 and RO2 radicals were 3 × 108 cm−3. The measured OH reactivity was between 4 and 18 s−1 in both seasons. The total reaction rate of peroxy radicals with NO was found to be consistent with production rates of odd oxygen (Ox= NO2 + O3) determined from NO2 and O3 concentration measurements. The chemical budgets of radicals were analyzed for the spring and summer seasons, when peroxy radical concentrations were above the detection limit. For most conditions, the concentrations of radicals were mainly sustained by the regeneration of OH via reactions of HO2 and RO2 radicals with nitric oxide (NO). The median diurnal profiles of the total radical production and destruction rates showed maxima between 3 and 6 ppbv h−1 for OH, HO2, and RO2. Total ROX (OH, HO2, and RO2) initiation and termination rates were below 3 ppbv h−1. The highest OH radical turnover rate of 13 ppbv h−1 was observed during a high-temperature (max. 40 ∘C) period in August. In this period, the highest HO2, RO2, and ROX turnover rates were around 11, 10, and 4 ppbv h−1, respectively. When NO mixing ratios were between 1 and 3 ppbv, OH and HO2 production and destruction rates were balanced, but unexplained RO2 and ROX production reactions with median rates of 2 and 0.4 ppbv h−1, respectively, were required to balance their destruction. For NO mixing ratios above 3 ppbv, the peroxy radical reaction rates with NO were highly uncertain due to the low peroxy radical concentrations close to the limit of NO interferences in the HO2 and RO2 measurements. For NO mixing ratios below 1 ppbv, a missing source for OH and a missing sink for HO2 were found with maximum rates of 3.0 and 2.0 ppbv h−1, respectively. The missing OH source likely consisted of a combination of a missing inter-radical HO2 to OH conversion reaction (up to 2 ppbv h−1) and a missing primary radical source (0.5–1.4 ppbv h−1). The dataset collected in this campaign allowed analyzing the potential impact of OH regeneration from RO2 isomerization reactions from isoprene, HO2 uptake on aerosol, and RO2 production from chlorine chemistry on radical production and destruction rates. These processes were negligible for the chemical conditions encountered in this study.

Funder

H2020 European Research Council

Horizon 2020 Framework Programme

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3