Aggravated air pollution and health burden due to traffic congestion in urban China

Author:

Wang PengORCID,Zhang Ruhan,Sun Shida,Gao MengORCID,Zheng BoORCID,Zhang Dan,Zhang YanliORCID,Carmichael Gregory R.,Zhang HongliangORCID

Abstract

Abstract. Vehicle emissions are regarded as a primary contributor to air pollution and related adverse health impacts. Heavy traffic congestion increases traffic flow and thus produces more O3 precursor emissions, leading to more adverse air quality issues. Although the development of a vehicle emission inventory has received great concern and continuous efforts, limitations still exist. For example, real-time diurnal variations and increases in emission rates due to traffic congestion are not well understood. In this study, we developed a new temporal allocation approach in transportation emissions to investigate the impact on air quality and health burden due to traffic congestion in China in 2020. Both real-time congestion-level data and emission correction factors were considered in the approach. Results show that traffic congestion aggravates air pollution and health burden across China, especially in the urban clusters such as the North China Plain and Sichuan Basin. In these regions, the average annual increases in fine particulate matter (PM2.5) and ozone (O3) could be up to 3.5 µg m−3 and 1.1 ppb, respectively. The excess PM2.5 and O3 attributed to the traffic congestion also induce an additional 20 000 and 5000 premature deaths in China, respectively. In major cities, the increased rate of premature mortality caused by traffic congestion may reach 17.5 %. Therefore, more effective and comprehensive vehicle emission control policies or better planning of the road network should be established to reduce traffic congestion and improve air quality in China.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Guangdong Provincial Applied Science and Technology Research and Development Program

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3