On the quality of RS41 radiosonde descent data
-
Published:2022-01-11
Issue:1
Volume:15
Page:165-183
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Ingleby BruceORCID, Motl Martin, Marlton Graeme, Edwards David, Sommer MichaelORCID, von Rohden Christoph, Vömel HolgerORCID, Jauhiainen Hannu
Abstract
Abstract. Radiosonde descent profiles have been available from tens of stations for several years now – mainly from Vaisala RS41 radiosondes. They have been compared with the ascent profiles, with ECMWF short-range forecasts and with co-located radio occultation retrievals. Over this time, our understanding of the data has grown, and the comparison has also shed some light on radiosonde ascent data. The fall rate is very variable and is an important factor, with high fall rates being associated with temperature
biases, especially at higher altitudes. Ascent winds are affected by pendulum motion; on average, descent winds are less affected by pendulum
motion and are smoother. It is plausible that the true wind variability in
the vertical lies between that shown by ascent and descent profiles. This
discrepancy indicates the need for reference wind measurements. With current processing, the best results are for radiosondes with parachutes and pressure sensors. Some of the wind, temperature and humidity data are now assimilated in the ECMWF forecast system.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference42 articles.
1. Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M.,
Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M.,
Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H.,
Thorne, P. W., Vömel, H., and Wang, J.: Reference Upper-Air Observations
for Climate: From Concept to Reality, B. Am. Meteorol. Soc., 97, 123–135,
https://doi.org/10.1175/BAMS-D-14-00072.1, 2016. 2. de Podesta, M., Bell, S., and Underwood, R.: Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and
meteorology, Metrologia, 55, 229, https://doi.org/10.1088/1681-7575/aaaa52, 2018. 3. Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7,
4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014. 4. ECMWF: ecCodes, ECMWF [code], available at: https://confluence.ecmwf.int/display/ECC/ecCodes+Home (last access: 6 January 2022), 2021. 5. Edwards, D., Anderson, G., Oakley, T., and Gault, P.: Met Office Intercomparison of Vaisala RS92 and RS41 Radiosondes, available at: https://www.vaisala.com/sites/default/files/documents/Met_Office_Intercomparison_of_Vaisala_RS41_and_RS92_Radiosondes.pdf
(last access: 5 January 2022), 2014.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|