Integrated land and water-borne geophysical surveys shed light on the sudden drying of large karst lakes in southern Mexico
-
Published:2021-02-24
Issue:2
Volume:12
Page:439-461
-
ISSN:1869-9529
-
Container-title:Solid Earth
-
language:en
-
Short-container-title:Solid Earth
Author:
Bücker Matthias, Flores Orozco AdriánORCID, Gallistl JakobORCID, Steiner MatthiasORCID, Aigner Lukas, Hoppenbrock Johannes, Glebe Ruth, Morales Barrera WendyORCID, Pita de la Paz Carlos, García García César Emilio, Razo Pérez José Alberto, Buckel JohannesORCID, Hördt Andreas, Schwalb AntjeORCID, Pérez Liseth
Abstract
Abstract. Karst water resources play an important role in drinking water supply but are highly vulnerable to even slight changes in climate. Thus, solid and spatially dense geological information is needed to model the response of karst hydrological systems to such changes. Additionally, environmental information archived in lake sediments can be used to understand past climate effects on karst water systems. In the present study, we carry out a multi-methodological geophysical survey to investigate the geological situation and sedimentary infill of two karst lakes (Metzabok and Tzibaná) of the Lacandon Forest in Chiapas, southern Mexico. Both lakes present large seasonal lake-level fluctuations and experienced an unusually sudden and strong lake-level decline in the first half of 2019, leaving Lake Metzabok (maximum depth ∼25 m) completely dry and Lake Tzibaná (depth ∼70 m) with a water level decreased by approx. 15 m. Before this event, during a lake-level high stand in March 2018, we collected water-borne seismic data with a sub-bottom profiler (SBP) and transient electromagnetic (TEM) data with a newly developed floating single-loop configuration. In October 2019, after the sudden drainage event, we took advantage of this unique situation and carried out complementary measurements directly on the exposed lake floor of Lakes Metzabok and Tzibaná. During this second campaign, we collected time-domain induced polarization (TDIP) and seismic refraction tomography (SRT) data. By integrating the multi-methodological data set, we (1) identify 5–6 m thick, likely undisturbed sediment sequences on the bottom of both lakes, which are suitable for future paleoenvironmental drilling campaigns, (2) develop a comprehensive geological model implying a strong interconnectivity between surface water and karst aquifer, and (3) evaluate the potential of the applied geophysical approach for the reconnaissance of the geological situation of karst lakes. This methodological evaluation reveals that under the given circumstances, (i) SBP and TDIP phase images consistently resolve the thickness of the fine-grained lacustrine sediments covering the lake floor, (ii) TEM and TDIP resistivity images consistently detect the upper limit of the limestone bedrock and the geometry of fluvial deposits of a river delta, and (iii) TDIP and SRT images suggest the existence of a layer that separates the lacustrine sediments from the limestone bedrock and consists of collapse debris mixed with lacustrine sediments. Our results show that the combination of seismic methods, which are most widely used for lake-bottom reconnaissance, with resistivity-based methods such as TEM and TDIP can significantly improve the interpretation by resolving geological units or bedrock heterogeneities, which are not visible from seismic data. Only the use of complementary methods provides sufficient information to develop comprehensive geological models of such complex karst environments
Funder
Consejo Nacional de Ciencia y Tecnología Deutsche Forschungsgemeinschaft Austrian Science Fund Agence Nationale de la Recherche
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science
Reference56 articles.
1. Bairlein, K., Hördt, A., and Nordsiek, S.: The influence on sample preparation on spectral induced polarization of unconsolidated sediments, Near Surf. Geophys., 12, 667–678, https://doi.org/10.3997/1873-0604.2014023, 2014. 2. Barrière, J., Bordes, C., Brito, D., Sénéchal, P., and Perroud, H.: Laboratory monitoring of P waves in partially saturated sand, Geophys. J. Int., 191, 1152–1170, https://doi.org/10.1111/j.1365-246X.2012.05691.x, 2012. 3. Baumgartner, F. and Christensen, N. B.: Analysis and application of a non-conventional underwater geoelectrical method in Lake Geneva, Switzerland, Geophys. Prospect., 46, 527–541, https://doi.org/10.1046/j.1365-2478.1998.00107.x, 2006. 4. Bechtel, T., Bosch, F., and Gurk, M.: Geophysical methods in karst hydrogeology, in: Methods in Karst Hydrogeology, edited by: Goldscheider, N. and Drew, D., Taylor and Francis/Balkema, London, UK, 171–199, 2007. 5. Befus, K. M., Cardenas, M. B., Ong, J. B., and Zlotnik, V. A.: Classification and delineation of groundwater–lake interactions in the Nebraska Sand Hills (USA) using electrical resistivity patterns, Hydrogeol. J., 20, 1483–1495, https://doi.org/10.1007/s10040-012-0891-x, 2012.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|