From lidar scans to roughness maps for wind resource modelling in forested areas
-
Published:2018-06-08
Issue:1
Volume:3
Page:353-370
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Floors RogierORCID, Enevoldsen Peter, Davis NeilORCID, Arnqvist JohanORCID, Dellwik EbbaORCID
Abstract
Abstract. Applying erroneous roughness lengths can have a large impact on the estimated performance of wind turbines, particularly in forested areas. In this study, a new method called the objective roughness approach (ORA), which converts tree height maps created using airborne lidar scans to roughness maps suitable for wind modelling, is evaluated via cross predictions among different anemometers at a complex forested site with seven tall meteorological masts using the Wind Atlas Analysis and Application Program (WAsP). The cross predictions were made using ORA maps created at four spatial resolutions and from four freely available roughness maps based on land use classifications. The validation showed that the use of ORA maps resulted in a closer agreement with observational data for all investigated resolutions compared to the land use maps. Further, when using the ORA maps, the risk of making large errors (> 25 %) in predicted power density was reduced by 40–50 % compared to satellite-based products with the same resolution. The results could be further improved for high-resolution ORA maps by adding the displacement height. The improvements when using the ORA maps were both due to a higher roughness length and due to the higher resolution.
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference44 articles.
1. American Society for Photogrammetry & Remote Sensing: Las Specification Version 1.3 – R11, Tech. rep., American Society for Photogrammetry & Remote Sensing, 2010. 2. Arnqvist, J., Segalini, A., Dellwik, E., and Bergström, H.: Wind Statistics from a Forested Landscape, Bound.-Lay. Meteorol., 156, 53–71, https://doi.org/10.1007/s10546-015-0016-x, 2015. 3. Bontemps, S., Defourny, P., Bogaert, E. V., Kalogirou, V., and Perez, J. R.: GLOBCOVER 2009 Products Description and Validation Report, ESA Bulletin, 136, 52 pp., https://doi.org/10013/epic.39884.d016, 2011. 4. Boudreault, L.-É., Bechmann, A., Tarvainen, L., Klemedtsson, L., Shendryk, I., and Dellwik, E.: A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests, Agr. Forest Meteorol., 201, 86–97, https://doi.org/10.1016/j.agrformet.2014.10.014, 2015. 5. Boudreault, L.-É., Dupont, S., Bechmann, A., and Dellwik, E.: How Forest Inhomogeneities Affect the Edge Flow, Bound.-Lay. Meteorol., 162, 375–400, https://doi.org/10.1007/s10546-016-0202-5, 2017.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|