From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography
-
Published:2013-10-29
Issue:5
Volume:9
Page:901-915
-
ISSN:1812-0792
-
Container-title:Ocean Science
-
language:en
-
Short-container-title:Ocean Sci.
Abstract
Abstract. The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and friends.
Publisher
Copernicus GmbH
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Reference95 articles.
1. Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009. 2. Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J., and Wallcraft, A. J.: Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25, 20–29, 2012. 3. Argo Science Team: On the Design and Implementation of Argo: An Initial plan for a Global Array of profiling Floats. International CLIVAR Project Office Report Number 2, GODAE Report No. 5, GODAE International Project Office, Melbourne, Australia, 1998. 4. Ayoub, N., Le Traon, P. Y., and De Mey, P.: Combining ERS-1 and TOPEX/Poseidon data to observe the variable oceanic circulation in the Mediterranean sea, J. Marine Syst., 18, 3–40, https://doi.org/10.1016/S0924-7963(98)80004-3, 1998. 5. Balmaseda, M. and Anderson, D.: Impact of initialization strategies and observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561, 2009.
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|