Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America
-
Published:2023-03-10
Issue:5
Volume:16
Page:1263-1278
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Hack Elion DanielORCID, Pauliquevis TheotonioORCID, Barbosa Henrique Melo JorgeORCID, Yamasoe Marcia AkemiORCID, Klebe Dimitri, Correia Alexandre LimaORCID
Abstract
Abstract. Atmospheric precipitable water vapor (PWV) is a critical quantity in fast-changing weather processes. Current retrieval techniques lack the spatial and/or temporal resolution necessary for a full PWV characterization. Here we investigate a retrieval method using an all-sky ground-based camera comprising a 14-bit 644 × 512-pixel microbolometer sensor array. The radiometrically calibrated infrared downwelling spectral radiance, Lλ, was acquired at rates of up to 3 min−1. For the studied site (23.56∘ S, 46.74∘W; 786 m a.s.l.) and spectral interval, Lλ is sensitive to the PWV; the vertical distribution of humidity; and their temporal, spatial, or seasonal variations. By comparing measured and simulated Lλ, we show that the PWV can be retrieved from prior knowledge of the local humidity profile. This information can originate from radiosonde data or statistical analysis of past vertical humidity distributions. Comparison with sun photometer PWV retrievals, for stable atmospheric conditions, showed an agreement of the average PWV within 2.8 % and a precision of subsequent retrievals of 1.9 %. The PWV was also retrieved as a bi-dimensional array, allowing for the investigation of spatial inhomogeneities of humidity distribution. The method can be used for daytime or nighttime retrievals, under partly cloudy sky conditions. Potential applications include studies on convection initiation processes.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference27 articles.
1. Adams, D. K., Fernandes, R. M. S., Kursinski, E. R., Maia, J. M., Sapucci,
L. F., Machado, L. A. T., Vitorello, I., Monico, J. F. G., Holub, K. L.,
Gutman, S. I., Filizola, N., and Bennett, R. A.: A dense GNSS
meteorological network for observing deep convection in the Amazon,
Atmos. Sci. Lett., 12, 207–212, https://doi.org/10.1002/asl.312, 2011. a 2. Adams, D. K., Gutman, S. I., Holub, K. L., and Pereira, D. S.: GNSS
observations of deep convective time scales in the Amazon, Geophys.
Res. Lett., 40, 2818–2823, https://doi.org/10.1002/grl.50573, 2013. a 3. Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle,
E. P.: AFGL atmospheric constituent profiles (0–120 km), Tech. Rep.
AFGL-TR-86-0110, Tech. rep., Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, Mass,
https://www.osti.gov/biblio/6862535 (last access: 30 August 2022), https://apps.dtic.mil/sti/pdfs/ADA175173.pdf (last access: 30 August 2022), 1986. a, b, c 4. Benevides, P., Catalao, J., and Miranda, P. M. A.: On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall, Nat. Hazards Earth Syst. Sci., 15, 2605–2616, https://doi.org/10.5194/nhess-15-2605-2015, 2015. a 5. Castro-Almazán, J. A., Pérez-Jordán, G., and Muñoz-Tuñón, C.: A semiempirical error estimation technique for PWV derived from atmospheric radiosonde data, Atmos. Meas. Tech., 9, 4759–4781, https://doi.org/10.5194/amt-9-4759-2016, 2016. a, b, c
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|