Systematic analysis of virga and its impact on surface particulate matter observations

Author:

Karle Nakul N.ORCID,Sakai Ricardo K.,Fitzgerald Rosa M.,Ichoku Charles,Mercado Fernando,Stockwell William R.

Abstract

Abstract. Studies focusing on virga are rare, even though it is a commonly occurring phenomenon. In this study, we investigated aerosol backscatter profiles from a ceilometer located on The University of Texas at El Paso (UTEP) campus from 2015–2021 to identify virga events. Ceilometer data effectively captured virga events from regular precipitation based on the backscattering intensities. To characterize the virga phenomena, a systematic method was developed using ceilometer profiles, soundings, surface rain gauges, and radar data from the nearest National Weather Service (NWS) site. A total of 50 virga events were identified during the study period. These events appeared only during a specific time of the year, revealing a seasonal occurrence pattern. We identified and classified these virga events and investigated their impact on the surface measurements recorded by the on-campus Continuous Ambient Air Monitoring Station (CAMS). Virga events were classified as columnar and non-columnar events based on their aerosol profiles. We observed that during some of the columnar virga events, surface particulate matter (PM) levels displayed a sudden upward trend indicating aerosol loading in the surface layer after precipitation evaporation. In total, 20 of the virga events showed a columnar structure out of the 50 identified in this study. More detailed analysis of selected events shows that virga affects regional air quality. A significant result of this study is that analysis of sudden changes in local air quality needs to consider the possible effects of virga on the surface layer.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3