Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters
-
Published:2023-03-29
Issue:6
Volume:16
Page:1663-1682
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Hutchings Jack A., Konecky Bronwen L.ORCID
Abstract
Abstract. The demanding precision of triple oxygen isotope (Δ17O) analyses in water has restricted their measurement to dual-inlet
mass spectrometry until the recent development of commercially available
infrared laser analyzers. Laser-based measurements of triple oxygen isotope
ratios are now increasingly performed by laboratories seeking to better
constrain the source and history of meteoric waters. However, in practice,
these measurements are subject to large analytical errors that remain poorly documented in scientific literature and by instrument manufacturers, which can effectively restrict the confident application of Δ17O to settings where variations are relatively large (∼ 25–60 per
meg). We present our operating method of a Picarro L2140-i cavity ring-down
spectrometer (CRDS) during the analysis of low-latitude rainwater where
confidently resolving daily variations in Δ17O (differences of
∼ 10–20 per meg) was desired. Our approach was optimized over
∼ 3 years and uses a combination of published best practices
plus additional steps to combat spectral contamination of trace amounts of
dissolved organics, which, for Δ17O, emerges as a much more
substantial problem than previously documented, even in pure rainwater. We
resolve the extreme sensitivity of the Δ17O measurement to
organics through their removal via Picarro's micro-combustion module, whose
performance is evaluated in each sequence using alcohol-spiked standards. While correction for sample-to-sample memory and instrumental drift significantly improves traditional isotope metrics, these corrections have only a marginal impact (0–1 per meg error reduction) on Δ17O. Our
post-processing scheme uses the analyzer's high-resolution data, which
improves δ2H measurement (0.25 ‰ error
reduction) and allows for much more rich troubleshooting and data processing
compared to the default user-facing data output. In addition to competitive
performance for traditional isotope metrics, we report a long-term, control
standard root mean square error for Δ17O of 12 per meg. Overall
performance (Δ17O error of 6 per meg, calculated by averaging three
replicates spread across distinct, independently calibrated sequences) is
comparable to mass spectrometry and requires only ∼ 6.3 h per
sample. We demonstrate the impact of our approach using a rainfall dataset
from Uganda and offer recommendations for other efforts that aim to measure
meteoric Δ17O via CRDS.
Funder
David and Lucile Packard Foundation Directorate for Social, Behavioral and Economic Sciences National Geographic Society
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference48 articles.
1. Abdel-Shafy, H. I. and Mansour, M. S. M.: A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation, Egypt. J. Pet., 25, 107–123,
https://doi.org/10.1016/j.ejpe.2015.03.011, 2016. 2. Adachi, D., Katsumoto, Y., Sato, H., and Ozaki, Y.: Near-infrared
spectroscopic study of interaction between methyl group and water in
water-methanol mixtures, Appl. Spectrosc., 56, 357–361,
https://doi.org/10.1366/0003702021954728, 2002. 3. Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009. 4. Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H.,
Pelletier, E. M., Poulsen, C. J., Winkelstern, I. Z., and Yarian, D<span id="page1681"/>. A.:
Triple oxygen isotopes in the water cycle, Chem. Geol., 565,
120026, https://doi.org/10.1016/j.chemgeo.2020.120026, 2021. 5. Barkan, E. and Luz, B.: High precision measurements of 17O / 16O and 18O / 16O ratios in H2O, Rapid Commun. Mass Spectrom., 19, 3737–3742, https://doi.org/10.1002/rcm.2250, 2005.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|