Development of an International System of Units (SI)-traceable transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-spectrometry measurements

Author:

Worton David R.ORCID,Moreno Sergi,O'Daly Kieran,Holzinger RupertORCID

Abstract

Abstract. Since its inception more than 2 decades ago, proton-transfer-reaction mass spectrometry (PTR-MS) has established itself as a powerful technique for the measurements of a wide range of volatile organic compounds (VOCs) with high time resolution and low detection limits and without the need for any sample pre-treatment. As this technology has matured and its application become more widespread, there is a growing need for accurate and traceable calibration to ensure measurement comparability. As a result of the large number of VOCs detectable with PTR-MS, it is impractical to have a calibration standard or standards that cover all observable compounds. However, recent work has demonstrated that quantitative measurements of uncalibrated compounds are possible provided that the transmission curve is accurately constrained. To enable this, a novel traceable multi-component gas reference material containing 20 compounds spanning a mass range of 32 to 671 has been developed. The development and compositional evolution of this reference material are described along with an evaluation of its accuracy and stability. This work demonstrates that for the majority of components the accuracy is < 5 % (most < 3 %; < 10 % for hexamethylcyclotrisiloxane (D3-siloxane) and 1,2,4-trichlorobenzene – 1,2,4-TCB) with stabilities of > 2 years (> 1 year for acetonitrile, methanol and perfluorotributylamine – PFTBA).

Funder

Department for Business, Energy and Industrial Strategy, UK Government

European Metrology Programme for Innovation and Research

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3