On the low frequency component of the ENSO-Indian Monsoon relationship; a paired proxy perspective

Author:

Berkelhammer M.,Sinha A.,Mudelsee M.,Cheng H.,Yoshimura K.ORCID,Biswas J.

Abstract

Abstract. There are a number of clear examples in the instrumental period where positive El Niño events were coincident with a severely weakened summer monsoon over India (ISM). ENSO's influence on the Indian Monsoon has therefore remained the centerpiece of various predictive schemes of ISM rainfall for over a century. The teleconnection between the monsoon and ENSO has undergone a protracted weakening since the late 1980's suggesting the strength of ENSO's influence on the monsoon may vary considerably on multidecadal timescales. The recent weakening has specifically prompted questions as to whether this shift represents a natural mode of climate variability or a fundamental change in ENSO and/or ISM dynamics due to anthropogenic warming. The brevity of empirical observations and large systematic errors in the representation of these two systems in state-of-the-art general circulation models hamper efforts to reliably assess the low frequency nature of this dynamical coupling under varying climate forcings. Here we place the 20th century ENSO-Monsoon relationship in a millennial context by assessing the phase angle between the two systems across the time spectrum using a continuous tree-ring ENSO reconstruction from North America and a speleothem oxygen isotope (δ18O) based reconstruction of the ISM. The results suggest that in the high-frequency domain (≤ 15 yr), El Niño (La Niña) events persistently lead to a weakened (strengthened) monsoon consistent with the observed relationship between the two systems during the instrumental period. However, in the low frequency domain (≥ 60 yr), periods of strong monsoon are, in general, coincident with periods of enhanced ENSO variance. This relationship is opposite to which would be predicted dynamically and leads us to conclude that ENSO is not pacing the prominent multidecadal variability that has characterized the ISM over the last millennium.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3