On the low frequency component of the ENSO-Indian Monsoon relationship; a paired proxy perspective
Author:
Berkelhammer M., Sinha A., Mudelsee M., Cheng H., Yoshimura K.ORCID, Biswas J.
Abstract
Abstract. There are a number of clear examples in the instrumental period where positive El Niño events were coincident with a severely weakened summer monsoon over India (ISM). ENSO's influence on the Indian Monsoon has therefore remained the centerpiece of various predictive schemes of ISM rainfall for over a century. The teleconnection between the monsoon and ENSO has undergone a protracted weakening since the late 1980's suggesting the strength of ENSO's influence on the monsoon may vary considerably on multidecadal timescales. The recent weakening has specifically prompted questions as to whether this shift represents a natural mode of climate variability or a fundamental change in ENSO and/or ISM dynamics due to anthropogenic warming. The brevity of empirical observations and large systematic errors in the representation of these two systems in state-of-the-art general circulation models hamper efforts to reliably assess the low frequency nature of this dynamical coupling under varying climate forcings. Here we place the 20th century ENSO-Monsoon relationship in a millennial context by assessing the phase angle between the two systems across the time spectrum using a continuous tree-ring ENSO reconstruction from North America and a speleothem oxygen isotope (δ18O) based reconstruction of the ISM. The results suggest that in the high-frequency domain (≤ 15 yr), El Niño (La Niña) events persistently lead to a weakened (strengthened) monsoon consistent with the observed relationship between the two systems during the instrumental period. However, in the low frequency domain (≥ 60 yr), periods of strong monsoon are, in general, coincident with periods of enhanced ENSO variance. This relationship is opposite to which would be predicted dynamically and leads us to conclude that ENSO is not pacing the prominent multidecadal variability that has characterized the ISM over the last millennium.
Publisher
Copernicus GmbH
Reference42 articles.
1. Annamalai, H., Hamilton, K., and Sperber, K.: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations, J. Climate, 20, 1071–1092, 2007. 2. Ashok, K., Guan, Z., Saji, N., and Yamagata, T.: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon, J. Climate, 17, 3141–3155, 2004. 3. Berkelhammer, M., Sinha, A., Mudelsee, M., Cheng, H., Edwards, R. L., and Cannariato, K.: Persistent multidecadal power of the Indian Summer Monsoon, Earth Planet. Sci. Lett., 290, 166–172, 2010. 4. Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F., and Yoshimura, K.: An abrupt shift in the Indian monsoon 4000 years ago, Geophys. Monogr. Ser., 198, 75–87, 2012. 5. Buckley, B. M., Anchukaitis, K. J., Penny, D., Fletcher, R., Cook, E. R., Sano, M., Nam, L. C., Wichienkeeo, A., Minh, T. T., and Hong, T. M.: Climate as a contributing factor in the demise of Angkor, Cambodia, Proc. Natl. Acad. Sci. USA, 107, 6748–6752, https://doi.org/10.1073/pnas.0910827107, 2010.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|