The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques

Author:

Vidaller IxeiaORCID,Izagirre EñautORCID,del Rio Luis Mariano,Alonso-González EstebanORCID,Rojas-Heredia Francisco,Serrano Enrique,Moreno AnaORCID,López-Moreno Juan Ignacio,Revuelto JesúsORCID

Abstract

Abstract. The Aneto glacier, although it may be considered a very small glacier (<0.5 km2), is the largest glacier in the Pyrenees. Its surface and thickness loss have been continuous in recent decades, and there have been signs of accelerated melting in recent years. In this study, thickness and surface losses of the Aneto glacier from 1981 to 2022 are investigated using historical aerial imagery, airborne lidar point clouds and unoccupied aerial vehicle (UAV) imagery. A ground-penetrating radar (GPR) survey conducted in 2020, combined with data from photogrammetric analyses, allowed us to reconstruct the current ice thickness and also the existing ice distribution in 1981 and 2011. Over the last 41 years, the total glacierised area has decreased by 64.7 %, and the ice thickness has decreased, on average, by 30.5 m. The mean remaining ice thickness in autumn 2022 was 11.9 m, as against the mean thickness of 32.9, 19.2 and 15.0 m reconstructed for 1981 and 2011 and observed in 2020, respectively. The results demonstrate the critical situation of the glacier, with an imminent segmentation into two smaller ice bodies and no evidence of an accumulation zone. We also found that the occurrence of an extremely hot and dry year, as observed in the 2021–2022 season, leads to a drastic degradation of the glacier, posing a high risk to the persistence of the Aneto glacier, a situation that could extend to the rest of the Pyrenean glaciers in a relatively short time.

Funder

Ministerio de Ciencia e Innovación

Universidad de Zaragoza

Euskal Herriko Unibertsitatea

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3