Seasonal hydrologic prediction in the United States: understanding the role of initial hydrologic conditions and seasonal climate forecast skill

Author:

Shukla S.,Lettenmaier D. P.

Abstract

Abstract. Seasonal hydrologic forecasts derive their skill from knowledge of initial hydrologic conditions and climate forecast skill associated with seasonal climate outlooks. Depending on the type of hydrological regime and the season, the relative contributions of initial hydrologic conditions and climate forecast skill to seasonal hydrologic forecast skill vary. We seek to quantify these contributions on a relative basis across the Conterminous United States. We constructed two experiments – Ensemble Streamflow Prediction and reverse-Ensemble Streamflow Prediction – to partition the contributions of the initial hydrologic conditions and climate forecast skill to overall forecast skill. In ensemble streamflow prediction (first experiment) hydrologic forecast skill is derived solely from knowledge of initial hydrologic conditions, whereas in reverse-ensemble streamflow prediction (second experiment), it is derived solely from atmospheric forcings (i.e. perfect climate forecast skill). Using the ratios of root mean square error in predicting cumulative runoff and mean monthly soil moisture of each experiment, we identify the variability of the relative contributions of the initial hydrologic conditions and climate forecast skill spatially throughout the year. We conclude that the initial hydrologic conditions generally have the strongest influence on the prediction of cumulative runoff and soil moisture at lead-1 (first month of the forecast period), beyond which climate forecast skill starts to have greater influence. Improvement in climate forecast skill alone will lead to better seasonal hydrologic forecast skill in most parts of the Northeastern and Southeastern US throughout the year and in the Western US mainly during fall and winter months; whereas improvement in knowledge of the initial hydrologic conditions can potentially improve skill most in the Western US during spring and summer months. We also observed that at a short lead time (i.e. lead-1) contribution of the initial hydrologic conditions in soil moisture forecasts is more extensive than in cumulative runoff forecasts across the Conterminous US.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3