Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

Author:

Liu Y. Y.,Parinussa R. M.,Dorigo W. A.,De Jeu R. A. M.,Wagner W.,van Dijk A. I. J. M.,McCabe M. F.,Evans J. P.

Abstract

Abstract. Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E) and active (ASCAT) microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3) from AMSR-E and degree of saturation (%) from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 ("transitional regions"), merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3