Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands

Author:

Bitew M. M.,Gebremichael M.

Abstract

Abstract. The objective is to assess the suitability of commonly used high-resolution satellite rainfall products (CMORPH, TMPA 3B42RT, TMPA 3B42 and PERSIANN) as input to the semi-distributed hydrological model SWAT for daily streamflow simulation in two watersheds (Koga at 299 km2 and Gilgel Abay at 1656 km2) of the Ethiopian highlands. First, the model is calibrated for each watershed with respect to each rainfall product input for the period 2003–2004. Then daily streamflow simulations for the validation period 2006–2007 are made from SWAT using rainfall input from each source and corresponding model parameters; comparison of the simulations to the observed streamflow at the outlet of each watershed forms the basis for the conclusions of this study. Results reveal that the utility of satellite rainfall products as input to SWAT for daily streamflow simulation strongly depends on the product type. The 3B42RT and CMORPH simulations show consistent and modest skills in their simulations but underestimate the large flood peaks, while the 3B42 and PERSIANN simulations have inconsistent performance with poor or no skills. Not only are the microwave-based algorithms (3B42RT, CMORPH) better than the infrared-based algorithm (PERSIANN), but the infrared-based algorithm PERSIANN also has poor or no skills for streamflow simulations. The satellite-only product (3B42RT) performs much better than the satellite-gauge product (3B42), indicating that the algorithm used to incorporate rain gauge information with the goal of improving the accuracy of the satellite rainfall products is actually making the products worse, pointing to problems in the algorithm. The effect of watershed area on the suitability of satellite rainfall products for streamflow simulation also depends on the rainfall product. Increasing the watershed area from 299 km2 to 1656 km2 improves the simulations obtained from the 3B42RT and CMORPH (i.e. products that are more reliable and consistent) rainfall inputs while it deteriorates the simulations obtained from the 3B42 and PERSIANN (i.e. products that are unstable and inconsistent) rainfall inputs.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3