Series distance – an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events

Author:

Ehret U.,Zehe E.

Abstract

Abstract. Applying metrics to quantify the similarity or dissimilarity of hydrographs is a central task in hydrological modelling, used both in model calibration and the evaluation of simulations or forecasts. Motivated by the shortcomings of standard objective metrics such as the Root Mean Square Error (RMSE) or the Mean Absolute Peak Time Error (MAPTE) and the advantages of visual inspection as a powerful tool for simultaneous, case-specific and multi-criteria (yet subjective) evaluation, we propose a new objective metric termed Series Distance, which is in close accordance with visual evaluation. The Series Distance quantifies the similarity of two hydrographs neither in a time-aggregated nor in a point-by-point manner, but on the scale of hydrological events. It consists of three parts, namely a Threat Score which evaluates overall agreement of event occurrence, and the overall distance of matching observed and simulated events with respect to amplitude and timing. The novelty of the latter two is the way in which matching point pairs on the observed and simulated hydrographs are identified: not by equality in time (as is the case with the RMSE), but by the same relative position in matching segments (rise or recession) of the event, indicating the same underlying hydrological process. Thus, amplitude and timing errors are calculated simultaneously but separately, from point pairs that also match visually, considering complete events rather than only individual points (as is the case with MAPTE). Relative weights can freely be assigned to each component of the Series Distance, which allows (subjective) customization of the metric to various fields of application, but in a traceable way. Each of the three components of the Series Distance can be used in an aggregated or non-aggregated way, which makes the Series Distance a suitable tool for differentiated, process-based model diagnostics. After discussing the applicability of established time series metrics for hydrographs, we present the Series Distance theory, discuss its properties and compare it to those of standard metrics used in Hydrology, both at the example of simple, artificial hydrographs and an ensemble of realistic forecasts. The results suggest that the Series Distance quantifies the degree of similarity of two hydrographs in a way comparable to visual inspection, but in an objective, reproducible way.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3