Infiltration-soil moisture redistribution under natural conditions: experimental evidence as a guideline for realizing simulation models

Author:

Morbidelli R.,Corradini C.,Saltalippi C.,Flammini A.,Rossi E.

Abstract

Abstract. The evolution in time, t, of the experimental soil moisture vertical profile under natural conditions is investigated in order to address the corresponding simulation modelling. The measurements were conducted in a plot with a bare silty loam soil. The soil water content, θ, was continuously monitored at different depths, z, using a Time Domain Reflectometry (TDR) system. Four buriable three-rod waveguides were inserted horizontally at different depths (5, 15, 25 and 35 cm). In addition, we used sensors of air temperature and relative humidity, wind speed, solar radiation, evaporation and rain as supports for the application of selected simulation models, as well as for the detection of elements leading to their improvement. The results indicate that, under natural conditions, very different trends of the θ(z, t) function can be observed in the given fine-textured soil, where the formation of a sealing layer over the parent soil requires an adjustment of the simulation modelling commonly used for hydrological applications. In particular, because of the considerable variations in the shape of the moisture content vertical profile as a function of time, a generalization of the existing models should incorporate a first approximation of the variability in time of the saturated hydraulic conductivity, K1s, of the uppermost soil. This conclusion is supported by the fact that the observed shape of θ(z, t) can be appropriately reproduced by adopting the proposed approach with K1s kept constant during each rainfall event but considered variable from event to event, however the observed rainfall rate and the occurrence of freeze-thaw cycles with high soil moisture contents have to be explicitly incorporated in a functional form for K1s(t).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3