Remote-sensing and radiosonde datasets collected in the San Luis Valley during the LAPSE-RATE campaign
-
Published:2021-03-15
Issue:3
Volume:13
Page:1041-1051
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Bell Tyler M.ORCID, Klein Petra M., Lundquist Julie K.ORCID, Waugh Sean
Abstract
Abstract. In July 2018, the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a flight week to showcase the role remotely piloted aircraft systems (RPASs) can have in filling the atmospheric data gap. This campaign was called Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). In support of this campaign, ground-based remote and in situ systems were also deployed for the campaign. The University of Oklahoma deployed the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS), the University of Colorado deployed two Doppler wind lidars, and the National Severe Storms Laboratory deployed a mobile mesonet with the ability to launch radiosondes. This paper focuses on the data products from these instruments that result in profiles of the atmospheric state. The data are publicly available in the Zenodo LAPSE-RATE community portal (https://zenodo.org/communities/lapse-rate/, 19 January 2021). The profile data discussed are available at https://doi.org/10.5281/zenodo.3780623 (Bell and Klein, 2020), https://doi.org/10.5281/zenodo.3780593 (Bell et al., 2020b), https://doi.org/10.5281/zenodo.3727224 (Bell et al., 2020a), https://doi.org/10.5281/zenodo.3738175 (Waugh, 2020b), https://doi.org/10.5281/zenodo.3720444 (Waugh, 2020a), and https://doi.org/10.5281/zenodo.3698228 (Lundquist et al., 2020).
Funder
National Science Foundation U.S. Department of Energy
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference31 articles.
1. Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a
Wind-Profiling Lidar in the Region of Wind Turbine Rotor
Disks, J. Atmos. Ocean. Tech., 29, 347–355,
https://doi.org/10.1175/JTECH-D-11-00033.1, 2012. a, b 2. Barbieri, L., Kral, S. T., Bailey, S. C. C., Frazier, A. E., Jacob, J. D.,
Reuder, J., Brus, D., Chilson, P. B., Crick, C., Detweiler, C., Doddi, A.,
Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman,
M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little,
E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar,
A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.:
Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for
Atmospheric Science during the LAPSE-RATE Campaign, Sensors, 19, 2179,
https://doi.org/10.3390/s19092179, 2019. a 3. Bell, T. and Klein, P.: OU/NSSL CLAMPS Doppler Lidar Data from
LAPSE-RATE, Zenodo, https://doi.org/10.5281/zenodo.3780623, 2020. a, b 4. Bell, T., Klein, P., and Turner, D.: OU/NSSL CLAMPS AERIoe Temperature
and Water Vapor Profile Data from LAPSE-RATE, Zenodo,
https://doi.org/10.5281/zenodo.3727224, 2020a. a, b 5. Bell, T., Klein, P., and Turner, D.: OU/NSSL CLAMPS Microwave
Radiometer and Surface Meteorological Data from LAPSE-RATE, Zenodo,
https://doi.org/10.5281/zenodo.3780593, 2020b. a, b
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|