AQ-Bench: a benchmark dataset for machine learning on global air quality metrics

Author:

Betancourt ClaraORCID,Stomberg Timo,Roscher RibanaORCID,Schultz Martin G.ORCID,Stadtler ScarletORCID

Abstract

Abstract. With the AQ-Bench dataset, we contribute to the recent developments towards shared data usage and machine learning methods in the field of environmental science. The dataset presented here enables researchers to relate global air quality metrics to easy-access metadata and to explore different machine learning methods for obtaining estimates of air quality based on this metadata. AQ-Bench contains a unique collection of aggregated air quality data from the years 2010–2014 and metadata at more than 5500 air quality monitoring stations all over the world, provided by the first Tropospheric Ozone Assessment Report (TOAR). It focuses in particular on metrics of tropospheric ozone, which has a detrimental effect on climate, human morbidity and mortality, as well as crop yields. The purpose of this dataset is to produce estimates of various long-term ozone metrics based on time-independent local site conditions. We combine this task with a suitable evaluation metric. Baseline scores obtained from a linear regression method, a fully connected neural network and random forest are provided for reference and validation. AQ-Bench offers a low-threshold entrance for all machine learners with an interest in environmental science and for atmospheric scientists who are interested in applying machine learning techniques. It enables them to start with a real-world problem relevant to humans and nature. The dataset and introductory machine learning code are available at https://doi.org/10.23728/b2share.30d42b5a87344e82855a486bf2123e9f (Betancourt et al., 2020) and https://gitlab.version.fz-juelich.de/esde/machine-learning/aq-bench (Betancourt et al., 2021). AQ-Bench thus provides a blueprint for environmental benchmark datasets as well as an example for data re-use according to the FAIR principles.

Funder

H2020 European Research Council

Helmholtz-Gemeinschaft

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference67 articles.

1. Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model: procedures, data sources and analysis, Tech. rep., NOAA National Geophysical Data Center, available at: https://repository.library.noaa.gov/view/noaa/1163/noaa_1163_DS1.pdf (last access: 21 June 2021), 2009. a

2. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., Chen, J., Chen, J., Chen, Z., Chrzanowski, M., Coates, A., Diamos, G., Ding, K., Du, N., Elsen, E., Engel, J., Fang, W., Fan, L., Fougner, C., Gao, L., Gong, C., Hannun, A., Han, T., Johannes, L., Jiang, B., Ju, C., Jun, B., LeGresley, P., Lin, L., Liu, J., Liu, Y., Li, W., Li, X., Ma, D., Narang, S., Ng, A., Ozair, S., Peng, Y., Prenger, R., Qian, S., Quan, Z., Raiman, J., Rao, V., Satheesh, S., Seetapun, D., Sengupta, S., Srinet, K., Sriram, A., Tang, H., Tang, L., Wang, C., Wang, J., Wang, K., Wang, Y., Wang, Z., Wang, Z., Wu, S., Wei, L., Xiao, B., Xie, W., Xie, Y., Yogatama, D., Yuan, B., Zhan, J., and Zhu, Z.: Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, arXiv [preprint], arXiv:1512.02595, pp. 173–182, 8 December 2015. a

3. Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrasón, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T.: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res.-Atmos., 101, 29239–29253, https://doi.org/10.1029/96JD00126, 1996. a

4. Betancourt, C., Stomberg, T., Stadtler, S., Roscher, R., and Schultz, M. G.: AQ-Bench, B2SHARE [data set], http://doi.org/10.23728/b2share.30d42b5a87344e82855a486bf2123e9f, 2020. a, b, c

5. Betancourt, C., Stadtler, S., and Stomberg, T.: AQ-Bench Git repository, GitLab – JSC [data set], available at: https://gitlab.version.fz-juelich.de/esde/machine-learning/aq-bench, last access: 21 June 2021. a, b, c

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3