HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time

Author:

Berg PeterORCID,Almén Fredrik,Bozhinova DenicaORCID

Abstract

Abstract. HydroGFD3 (Hydrological Global Forcing Data) is a data set of bias-adjusted reanalysis data for daily precipitation and minimum, mean, and maximum temperature. It is mainly intended for large-scale hydrological modelling but is also suitable for other impact modelling. The data set has an almost global land area coverage, excluding the Antarctic continent and small islands, at a horizontal resolution of 0.25∘, i.e. about 25 km. It is available for the complete ERA5 reanalysis time period, currently 1979 until 5 d ago. This period will be extended back to 1950 once the back catalogue of ERA5 is available. The historical period is adjusted using global gridded observational data sets, and to acquire real-time data, a collection of several reference data sets is used. Consistency in time is attempted by relying on a background climatology and only making use of anomalies from the different data sets. Precipitation is adjusted for mean bias as well as the number of wet days in a month. The latter is relying on a calibrated statistical method with input only of the monthly precipitation anomaly such that no additional input data about the number of wet days are necessary. The daily mean temperature is adjusted toward the monthly mean of the observations and applied to 1 h time steps of the ERA5 reanalysis. Daily mean, minimum, and maximum temperature are then calculated. The performance of the HydroGFD3 data set is on par with other similar products, although there are significant differences in different parts of the globe, especially where observations are uncertain. Further, HydroGFD3 tends to have higher precipitation extremes, partly due to its higher spatial resolution. In this paper, we present the methodology, evaluation results, and how to access the data set at https://doi.org/10.5281/zenodo.3871707 (Berg et al., 2020).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3