Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions

Author:

Cao Xianyong,Tian Fang,Li Kai,Ni JianORCID,Yu Xiaoshan,Liu Lina,Wang Nannan

Abstract

Abstract. A modern pollen dataset with an even distribution of sites is essential for pollen-based past vegetation and climate estimations. As there were geographical gaps in previous datasets covering the central and eastern Tibetan Plateau, lake surface sediment samples (n=117) were collected from the alpine meadow region on the Tibetan Plateau between elevations of 3720 and 5170 m a.s.l. Pollen identification and counting were based on standard approaches, and modern climate data were interpolated from a robust modern meteorological dataset. A series of numerical analyses revealed that precipitation is the main climatic determinant of pollen spatial distribution: Cyperaceae, Ranunculaceae, Rosaceae, and Salix indicate wet climatic conditions, while Poaceae, Artemisia, and Chenopodiaceae represent drought. Model performance of both weighted-averaging partial least squares (WA-PLS) and the random forest (RF) algorithm suggest that this modern pollen dataset has good predictive power in estimating the past precipitation from pollen spectra from the eastern Tibetan Plateau. In addition, a comprehensive modern pollen dataset can be established by combining our modern pollen dataset with previous datasets, which will be essential for the reconstruction of vegetation and climatic signals for fossil pollen spectra on the Tibetan Plateau. Pollen datasets including both pollen counts and percentages for each sample, together with their site location and climatic data, are available at the National Tibetan Plateau Data Center (TPDC; Cao et al., 2021; https://doi.org/10.11888/Paleoenv.tpdc.271191).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3