Carbon emissions and removals from forests: new estimates, 1990–2020

Author:

Tubiello Francesco N.ORCID,Conchedda Giulia,Wanner Nathan,Federici SandroORCID,Rossi SimoneORCID,Grassi Giacomo

Abstract

Abstract. National, regional and global CO2 emissions and removals from forests were estimated for the period 1990–2020 using as input the country reports of the Global Forest Resources Assessment 2020. The new Food and Agriculture Organization of the United Nations (FAO) estimates, based on a simple carbon stock change approach, update published information on net emissions and removals from forests in relation to (a) net forest conversion and (b) forest land. Results show a significant reduction in global emissions from net forest conversion over the study period, from a mean of 4.3 in 1991–2000 to 2.9 Gt CO2 yr−1 in 2016–2020. At the same time, forest land was a significant carbon sink globally but decreased in strength over the study period, from −3.5 to −2.6 Gt CO2 yr−1. Combining net forest conversion with forest land, our estimates indicated that globally forests were a small net source of CO2 to the atmosphere on average during 1990–2020, with mean net emissions of 0.4 Gt CO2 yr−1. The exception was the brief period 2011–2015, when forest land removals counterbalanced emissions from net forest conversion, resulting in a global net sink of −0.7 Gt CO2 yr−1. Importantly, the new estimates allow for the first time in the literature the characterization of forest emissions and removals for the decade just concluded, 2011–2020, showing that in this period the net contribution of forests to the atmosphere was very small, i.e., a sink of less than −0.2 Gt CO2 yr−1 – an estimate not yet reported in the literature. This near-zero balance was nonetheless the result of large global fluxes of opposite sign, namely net forest conversion emissions of 3.1 Gt CO2 yr−1 counterbalanced by net removals on forest land of −3.3 Gt CO2 yr−1. Finally, we compared our estimates with data independently reported by countries to the United Nations Framework on Climate Change, indicating close agreement between FAO and country emissions and removals estimates. Data from this study are openly available via the Zenodo portal (Tubiello, 2020), with DOI https://doi.org/10.5281/zenodo.3941973, as well as in the FAOSTAT (Food and Agriculture Organization Corporate Statistical Database) emissions database (FAO, 2021a).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference22 articles.

1. FAO: Global Forest Resources Assessment 2015, How are the world's forests changing? Second edition, Food and Agriculture Organization of the United Nations, Rome, Italy, available at: http://www.fao.org/3/a-i4793e.pdf (last access: January 2021), FAO, Rome, 2016.

2. FAO: Global Forest Resources Assessment 2020: Main Report, available at: http://www.fao.org/documents/card/en/c/ca9825en (last access: January 2021), FAO, Rome, 2020.

3. FAO: FAOSTAT Emissions – Land Use, Forest Land, available at: http://www.fao.org/faostat/en/#data/GF (last access: January 2021), FAO, Rome, 2021a.

4. FAO: Land statistics. Global, regional and country trends, 1990–2018. FAOSTAT Analytical Brief Series No. 15. Rome, Italy. Available at: http://www.fao.org/3/cb2860en/cb2860en.pdf (last access: January 2021), FAO, Rome, 2021b.

5. FAO and UN: System of Environmental-Economic Accounting for Agriculture, Forestry and Fisheries (SEEA AFF), Rome, https://doi.org/10.4060/ca7735en, 2020.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3