SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications

Author:

Gupta Surya,Hengl TomislavORCID,Lehmann PeterORCID,Bonetti SaraORCID,Or DaniORCID

Abstract

Abstract. The saturated soil hydraulic conductivity (Ksat) is a key parameter in many hydrological and climate models. Ksat values are primarily determined from basic soil properties and may vary over several orders of magnitude. Despite the availability of Ksat datasets in the literature, significant efforts are required to combine the data before they can be used for specific applications. In this work, a total of 13 258 Ksat measurements from 1908 sites were assembled from the published literature and other sources, standardized (i.e., units made identical), and quality checked in order to obtain a global database of soil saturated hydraulic conductivity (SoilKsatDB). The SoilKsatDB covers most regions across the globe, with the highest number of Ksat measurements from North America, followed by Europe, Asia, South America, Africa, and Australia. In addition to Ksat, other soil variables such as soil texture (11 584 measurements), bulk density (11 262 measurements), soil organic carbon (9787 measurements), moisture content at field capacity (7382), and wilting point (7411) are also included in the dataset. To show an application of SoilKsatDB, we derived Ksat pedotransfer functions (PTFs) for temperate regions and laboratory-based soil properties (sand and clay content, bulk density). Accurate models can be fitted using a random forest machine learning algorithm (best concordance correlation coefficient (CCC) equal to 0.74 and 0.72 for temperate area and laboratory measurements, respectively). However, when these Ksat PTFs are applied to soil samples obtained from tropical climates and field measurements, respectively, the model performance is significantly lower (CCC = 0.49 for tropical and CCC = 0.10 for field measurements). These results indicate that there are significant differences between Ksat data collected in temperate and tropical regions and Ksat measured in the laboratory or field. The SoilKsatDB dataset is available at https://doi.org/10.5281/zenodo.3752721 (Gupta et al., 2020) and the code used to extract the data from the literature and the applied random forest machine learning approach are publicly available under an open data license.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydro-pedotransfer functions: a roadmap for future development;Hydrology and Earth System Sciences;2024-07-29

2. Prediction of Soil Moisture From Near-Global Cygnss Gnss-Reflectometry Using a Random Forest Machine Learning Model;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Streamflow drought onset and severity explained by non‐linear responses between climate‐catchment and land surface processes;Hydrological Processes;2024-07

4. Regional disparities and social-ecological constraints of soil antibiotic pollution in urban agglomerations of China;Progress in Physical Geography: Earth and Environment;2024-06-19

5. Estimation of soil moisture from Rongowai GNSS-R using machine learning;2024 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS);2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3