10 years of temperature and wind observation on a 45 m tower at Dome C, East Antarctic plateau

Author:

Genthon ChristopheORCID,Veron Dana,Vignon EtienneORCID,Six Delphine,Dufresne Jean-LouisORCID,Madeleine Jean-Baptiste,Sultan Emmanuelle,Forget François

Abstract

Abstract. Long-term, continuous in situ observations of the near-surface atmospheric boundary layer are critical for many weather and climate applications. Although there is a proliferation of surface stations globally, especially in and around populous areas, there are notably fewer tall meteorological towers with multiple instrumented levels. This is particularly true in remote and extreme environments such as the East Antarctic plateau. In the article, we present and analyze 10 years of data from six levels of meteorological instrumentation mounted on a 42 m tower located at Dome C, East Antarctica, near the Concordia research station, producing a unique climatology of the near-surface atmospheric environment (Genthon et al., 2021a, b). Monthly temperature and wind data demonstrate the large seasonal differences in the near-surface boundary layer dynamics, depending on the presence or absence of solar surface forcing. Strong vertical temperature gradients (inversions) frequently develop in calm, winter conditions, while vertical convective mixing occurs in the summer, leading to near-uniform temperatures along the tower. Seasonal variation in wind speed is much less notable at this location than the temperature variation as the winds are less influenced by the solar cycle; there are no katabatic winds as Dome C is quite flat. Harmonic analysis confirms that most of the energy in the power spectrum is at diurnal, annual and semi-annual timescales. Analysis of observational uncertainty and comparison to reanalysis data from the latest generation of ECMWF (European Centre for Medium-Range Weather Forecasts) reanalyses (ERA5) indicate that wind speed is particularly difficult to measure at this location. Data are distributed on the PANGAEA data repository at https://doi.org/10.1594/PANGAEA.932512 (Genthon et al., 2021a) and https://doi.org/10.1594/PANGAEA.932513 (Genthon et al., 2021b).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3