Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 2: Snow processes and snow–canopy interactions

Author:

Meriö Leo-JuhaniORCID,Rauhala AnssiORCID,Ala-aho PerttiORCID,Kuzmin Anton,Korpelainen Pasi,Kumpula Timo,Kløve Bjørn,Marttila HannuORCID

Abstract

Abstract. Detailed information on seasonal snow cover and depth is essential to the understanding of snow processes, to operational forecasting, and as input for hydrological models. Recent advances in uncrewed or unmanned aircraft systems (UASs) and structure from motion (SfM) techniques have enabled low-cost monitoring of spatial snow depth distribution in resolutions of up to a few centimeters. Here, we study the spatiotemporal variability in snow depth and interactions between snow and vegetation in different subarctic landscapes consisting of a mosaic of conifer forest, mixed forest, transitional woodland/shrub, and peatland areas. To determine the spatiotemporal variability in snow depth, we used high-resolution (50 cm) snow depth maps generated from repeated UAS–SfM surveys in the winter of 2018/2019 and a snow-free bare-ground survey after snowmelt. Due to poor subcanopy penetration with the UAS–SfM method, tree masks were utilized to remove canopy areas and the area (36 cm) immediately next to the canopy before analysis. Snow depth maps were compared to the in situ snow course and a single-point continuous ultrasonic snow depth measurement. Based on the results, the difference between the UAS–SfM survey median snow depth and single-point measurement increased for all land cover types during the snow season, from +5 cm at the beginning of the accumulation to −16 cm in coniferous forests and −32 cm in peatland during the melt period. This highlights the poor representation of point measurements in selected locations even on the subcatchment scale. The high-resolution snow depth maps agreed well with the snow course measurement, but the spatial extent and resolution of maps were substantially higher. The snow depth range (5th–95th percentiles) within different land cover types increased from 17 to 42 cm in peatlands and from 33 to 49 cm in the coniferous forest from the beginning of the snow accumulation to the melt period. Both the median snow depth and its range were found to increase with canopy density; this increase was greatest in the conifer forest area, followed by mixed forest, transitional woodland/shrub, and open peatlands. Using the high-spatial-resolution data, we found a systematic increase (2–20 cm) and then a decline in snow depth near the canopy with increasing distance (from 1 to 2.5 m) of the peak value through the snow season. This study highlights the applicability of the UAS–SfM in high-resolution monitoring of snow depth in multiple land cover types and snow–vegetation interactions in subarctic and remote areas where field data are not available or where the available data are collected using classic point measurements or snow courses.

Funder

Academy of Finland

Horizon 2020

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3