Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils
Author:
Aragão L. E. O. C.,Malhi Y.,Metcalfe D. B.,Silva-Espejo J. E.,Jiménez E.,Navarrete D.,Almeida S.,Costa A. C. L.,Salinas N.,Phillips O. L.,Anderson L. O .,Baker T. R.,Goncalvez P. H.,Huamán-Ovalle J.,Mamani-Solórzano M.,Meir P.,Monteagudo A.,Peñuela M. C.,Prieto A.,Quesada C. A.,Rozas-Dávila A.,Rudas A.,Silva Junior J. A.,Vásquez R.
Abstract
Abstract. The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.
Publisher
Copernicus GmbH
Reference62 articles.
1. Anderson, L. O., Malhi, Y., Ladle, R. J., Aragão, L. E. O. C., Shimabukuro, Y., Phillips, O. L., Baker, T., Costa, A. C. L., Espejo, J. S., Higuchi, N., Laurance, W. F., López-González, G., Monteagudo, A., N\\'uñez-Vargas, P., Peacock, J., Quesada, C. A., Almeida, S., and Vásquez, R.: Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia, Biogeosciences Discuss., 6, 2039–2083, 2009. 2. Ara\\'ujo, A. C., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A. O., Culf, A. D., Gash, J. H. C., Valentini, R., and Kabat, P.: Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site, J. Geophys. Res.-Atmos., 107(20), 8090, https://doi.org/10.1029/2001JD000676, 2002. 3. Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. G., Lewis, S., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., Silva, J. M. N., and Martines, R. V.: Variation in wood density determines spatial patterns in Amazonian forest biomass, Glob. Change Biol., 10, 545–562, 2004. 4. Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26(9), https://doi.org/10.1080/01431160412331291297, 2005. 5. Bloom, A. J., Chapin III, F. S., Mooney, H. A.: Resource limitation in plants – an economic analogy, Ann. Rev. Ecol. Syst., 16, 363–93, 1985.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|