Antarctic Circumpolar Transport and the Southern Mode: a model investigation of interannual to decadal time scales

Author:

Hughes C. W.ORCID,Williams J.ORCID,Coward A. C.,de Cuevas B. A.

Abstract

Abstract. It is well-established that, at periods shorter than a year, variations in Antarctic Circumpolar Transport are reflected in a barotropic mode, known as the Southern Mode, in which sea level and bottom pressure varies coherently around Antarctica. Here, we use two multidecadal ocean model runs to investigate the behaviour of the Southern Mode at time scales on which density changes become important, leading to a baroclinic component to the adjustment. We find that the concept of a Southern Mode in bottom pressure remains valid, and remains a direct measure of the circumpolar transport, with changes at the northern boundary playing only a small role even on decadal time scales. However, at periods longer than about 5 yr, density changes start to play a role, leading to a surface intensification of the vertical profile of the transport. We also find that barotropic currents on the continental slope account for a significant fraction of the variability, and produce surface intensification in the meridional-integral flow. The role of density variations results in a sea level signal which, although reflecting transport changes at all time scales, has a ratio of sea level to transport which becomes larger at longer time scales. This means that any long-term transport monitoring strategy based on present measurement systems must involve multiplying the observed quantity by a factor which depends on frequency.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3