Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs
-
Published:2021-04-20
Issue:8
Volume:21
Page:5883-5903
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Fiddes Sonya L.ORCID, Woodhouse Matthew T.ORCID, Lane Todd P., Schofield RobynORCID
Abstract
Abstract. Dimethyl sulfide (DMS) is a naturally occurring aerosol precursor gas which plays an important role in the global sulfur budget, aerosol formation and climate. While DMS is produced predominantly by phytoplankton, recent observational literature has suggested that corals and their symbionts produce a comparable amount of DMS, which is unaccounted for in models. It has further been hypothesised that the coral reef source of DMS may modulate regional climate. This hypothesis presents a particular concern given the current threat to coral reefs under anthropogenic climate change. In this paper, a global climate model with online chemistry and aerosol is used to explore the influence of coral-reef-derived DMS on atmospheric composition and climate. A simple representation of coral-reef-derived DMS is developed and added to a common DMS surface water climatology, resulting in an additional flux of 0.3 Tg yr−1 S, or 1.7 % of the global sulfur flux from DMS. By comparing the differences between both nudged and free-running ensemble simulations with and without coral-reef-derived DMS, the influence of coral-reef-derived DMS on regional climate is quantified. In the Maritime Continent–Australian region, where the highest density of coral reefs exists, a small decrease in nucleation- and Aitken-mode aerosol number concentration and mass is found when coral reef DMS emissions are removed from the system. However, these small responses are found to have no robust effect on regional climate via direct and indirect aerosol effects. This work emphasises the complexities of the aerosol–climate system, and the limitations of current modelling capabilities are highlighted, in particular surrounding convective responses to changes in aerosol. In conclusion, we find no robust evidence that coral-reef-derived DMS influences global and regional climate.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference82 articles.
1. Bell, T. G., Landwehr, S., Miller, S. D., de Bruyn, W. J., Callaghan, A. H., Scanlon, B., Ward, B., Yang, M., and Saltzman, E. S.: Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds, Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, 2017. a 2. Belviso, S., Moulin, C., Bopp, L., and Stefels, J.: Assessment of a global
climatology of oceanic dimethylsulfide (DMS) concentration based on SeaWiFS
imagery (1998–2001), Can. J. Fish. Aquat. Sci., 61,
804–816, https://doi.org/10.1139/F04-001, 2004. a 3. Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model: 1.
Model description and preliminary results, J. Geophys. Res.,
100, 26191, https://doi.org/10.1029/95JD02093, 1995. a 4. Bopp, L., Boucher, O., Aumont, O., Belviso, S., Dufresne, J.-L., Pham, M., and
Monfray, P.: Will marine dimethylsulfide emissions amplify or alleviate
global warming? A model study, Can. J. Fish. Aquat.
Sci., 61, 826–835, https://doi.org/10.1139/f04-045, 2004. a 5. Broadbent, A. D. and Jones, G. B.: DMS and DMSP in mucus ropes, coral mucus,
surface films and sediment pore waters from coral reefs in the Great Barrier
Reef, Mar. Freshwater Res., 55, 849–855, https://doi.org/10.1071/MF04114,
2004. a
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|