Measurement Report: Lidar measurements of stratospheric aerosol following the 2019 Raikoke and Ulawun volcanic eruptions

Author:

Vaughan GeraintORCID,Wareing David,Ricketts HugoORCID

Abstract

Abstract. At 18:00 UTC on 21 June 2019 the Raikoke volcano in the Kuril islands began a large-magnitude explosive eruption, sending a plume of ash and sulfur dioxide into the stratosphere. A Raman lidar system at Capel Dewi Atmospheric Observatory, UK, was deployed to measure the vertical extent and optical depth of the volcanic aerosol cloud following the eruption. The elastic channel at 355 nm allowed measurements up to 25 km, but the Raman channel was only sensitive to the troposphere. Therefore, retrievals of backscatter ratio profiles from the raw backscatter measurements required aerosol-free profiles derived from nearby radiosondes and allowance for aerosol extinction using a lidar ratio of 40–50 sr. Small amounts of aerosol were measured prior to the arrival of the volcanic cloud (27 June–5 July 2019), from pyroconvection over Canada. Model simulations by de Leeuw et al. (2020) and Kloss et al. (2020) show that volcanic ash may have reached Europe from 1 July onwards and was certainly present over the UK after 10 July. The lidar detected a thin layer at an altitude of 14 km late on 3 July, with the first detection of the main aerosol cloud on 13 July. In this initial period the aerosol was confined below 16 km, but eventually the cloud extended to 20.5 km. A sustained period of clearly enhanced stratospheric aerosol optical depths began in early August, with a maximum value (at 355 nm) around 0.05 in mid-August and remaining above 0.02 until early November. Thereafter, optical depths decayed to around 0.01 by the end of 2019 and remained around that level until May 2020. The altitude of peak backscatter varied considerably (between 14 and 18 km) but was generally around 15 km. However, on one notable occasion on 25 August 2019, a layer around 300 m thick with peak lidar backscatter ratio around 1.5 was observed as high as 21 km.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3