Where there is smoke there is mercury: Assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties associated with upscaling emissions estimates

Author:

McLagan David S.ORCID,Stupple Geoff W.,Darlington AndreaORCID,Hayden Katherine,Steffen Alexandra

Abstract

Abstract. Emissions from biomass burning are an important source of mercury (Hg) to the atmosphere and an integral component of the global Hg biogeochemical cycle. In 2018, measurements of gaseous elemental Hg (GEM) were taken on board a research aircraft along with a series of co-emitted contaminants in the emissions plume of an 88 km2 boreal forest wildfire on the Garson Lake Plain (GLP) in NW Saskatchewan, Canada. A series of four flight tracks were made perpendicular to the plume at increasing distances from the fire, each with three to five passes at different altitudes at each downwind location. The maximum GEM concentration measured on the flight was 2.88 ng m−3, which is ≈ 2.4× background concentration. GEM concentrations were significantly correlated with the co-emitted carbon species (CO, CO2, and CH4). Emissions ratios (ERs) were calculated from measured GEM and carbon co-contaminant data. Using the most correlated (least uncertain) of these ratios (GEM:CO), GEM concentrations were estimated at the higher 0.5 Hz time resolution of the CO measurements, resulting in maximum GEM concentrations and enhancements of 6.76 ng m−3 and ≈ 5.6×, respectively. Extrapolating the estimated maximum 0.5 Hz GEM concentration data from each downwind location back to source, 1 km and 1 m (from fire) concentrations were predicted to be 12.9 and 30.0 ng m−3, or enhancements of ≈ 11× and ≈ 25×, respectively. ERs and emissions factors (EFs) derived from the measured data and literature values were also used to calculate Hg emissions estimates on three spatial scales: (i) the GLP fires themselves, (ii) all boreal forest biomass burning, and (iii) global biomass burning. The most robust estimate was of the GLP fires (21 ± 10 kg of Hg) using calculated EFs that used minimal literature-derived data. Using the Top-down Emission Rate Retrieval Algorithm (TERRA), we were able to determine a similar emission estimate of 22 ± 7 kg of Hg. The elevated uncertainties of the other estimates and high variability between the different methods used in the calculations highlight concerns with some of the assumptions that have been used in calculating Hg biomass burning in the literature. Among these problematic assumptions are variable ERs of contaminants based on vegetation type and fire intensity, differing atmospheric lifetimes of emitted contaminants, the use of only one co-contaminant in emissions estimate calculations, and the paucity of atmospheric Hg species concentration measurements in biomass burning plumes.

Funder

Environment and Climate Change Canada

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3