Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls

Author:

Rabatel A.,Letréguilly A.,Dedieu J.-P.,Eckert N.

Abstract

Abstract. We present time series of equilibrium-line altitude (ELA) measured from the end-of-summer snow line altitude computed using satellite images, for 43 glaciers in the western Alps over the 1984–2010 period. More than 120 satellite images acquired by Landsat, SPOT and ASTER were used. In parallel, changes in climate variables, summer cumulative positive degree days (CPDD) and winter precipitation, were analyzed over the same time period using 22 weather stations located inside and around the study area. Assuming a continuous linear trend over the study period: (1) the average ELA of the 43 glaciers increased by about 170 m; (2) summer CPDD increased by about 150 PDD at 3000 m a.s.l.; and (3) winter precipitation remained rather stationary. Summer CPDD showed homogeneous spatial and temporal variability; winter precipitation showed homogeneous temporal variability, but some stations showed a slightly different spatial pattern. Regarding ELAs, temporal variability between the 43 glaciers was also homogeneous, but spatially, glaciers in the southern part of the study area differed from glaciers in the northern part, mainly due to a different precipitation pattern. A sensitivity analysis of the ELAs to climate and morpho-topographic variables (elevation, aspect, latitude) highlighted the following: (1) the average ELA over the study period of each glacier is strongly controlled by morpho-topographic variables; and (2) the interannual variability of the ELA is strongly controlled by climate variables, with the observed increasing trend mainly driven by increasing temperatures, even if significant nonlinear, low-frequency fluctuations appear to be driven by winter precipitation anomalies. Finally, we used an expansion of Lliboutry's approach to reconstruct fluctuations in the ELA of any glacier of the study area with respect to morpho-topographic and climate variables, by quantifying their respective weight and the related uncertainties in a consistent manner within a hierarchical Bayesian framework. This method was tested and validated using the ELA measured on the satellite images.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3