Soil warming in a cool-temperate mixed forest with peat soil enhanced heterotrophic and basal respiration rates but <i>Q</i><sub>10</sub> remained unchanged

Author:

Aguilos M.,Takagi K.,Liang N.,Watanabe Y.,Goto S.,Takahashi Y.,Mukai H.,Sasa K.

Abstract

Abstract. We conducted soil warming experiment in a cool-temperate forest with peat soil in northern Japan, during the snowless seasons of 2007–2009. Our objective was to determine whether or not the heterotrophic respiration rate and the temperature sensitivity would change by soil warming. We elevated the soil temperature by 3 °C at 5 cm depth by means of overhead infrared heaters and continuously measured soil CO2 fluxes by using a fifteen-channel automated chamber system. Trenching treatment was also carried out to separate heterotrophic respiration and root respiration from the total soil respiration. The fifteen chambers were divided into three groups each with five replications for the control, unwarmed-trenched, and warmed-trenched treatments. We found that heterotrophic respiration contributed 71 % of the total soil respiration with the remaining 29 % accounted to autotrophic respiration. Soil warming enhanced heterotrophic respiration by 74 % (mean 6.11 ± 3.07 S.D. μmol m−2 s–1) as compared to the unwarmed-trenched treatment (mean 3.52 ± 1.74 μmol m−2 s–1). Soil CO2 efflux, however, was weakly correlated with soil moisture, probably because the volumetric soil moisture (33–46 %) was within a plateau region for root and microbial activities. The enhancement in heterotrophic respiration with soil warming in our study suggests that global warming will accelerate the loss of carbon from forested peatlands more seriously than other upland forest soils. On the other hand, soil warming did not cause significant change in the temperature sensitivity, Q10, (2.79 and 2.74 determined using hourly efflux data for unwarmed- and warmed-trenched, respectively), but increased their basal respiration rate at 0 °C (0.93 and 1.21 μmol m−2 s−1, respectively). Results suggest that if we predict the soil heterotrophic respiration rate in future warmer environment using the current relationship between soil temperature and heterotrophic respiration, the rate can be underestimated.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3