Soil warming in a cool-temperate mixed forest with peat soil enhanced heterotrophic and basal respiration rates but <i>Q</i><sub>10</sub> remained unchanged
Author:
Aguilos M.,Takagi K.,Liang N.,Watanabe Y.,Goto S.,Takahashi Y.,Mukai H.,Sasa K.
Abstract
Abstract. We conducted soil warming experiment in a cool-temperate forest with peat soil in northern Japan, during the snowless seasons of 2007–2009. Our objective was to determine whether or not the heterotrophic respiration rate and the temperature sensitivity would change by soil warming. We elevated the soil temperature by 3 °C at 5 cm depth by means of overhead infrared heaters and continuously measured soil CO2 fluxes by using a fifteen-channel automated chamber system. Trenching treatment was also carried out to separate heterotrophic respiration and root respiration from the total soil respiration. The fifteen chambers were divided into three groups each with five replications for the control, unwarmed-trenched, and warmed-trenched treatments. We found that heterotrophic respiration contributed 71 % of the total soil respiration with the remaining 29 % accounted to autotrophic respiration. Soil warming enhanced heterotrophic respiration by 74 % (mean 6.11 ± 3.07 S.D. μmol m−2 s–1) as compared to the unwarmed-trenched treatment (mean 3.52 ± 1.74 μmol m−2 s–1). Soil CO2 efflux, however, was weakly correlated with soil moisture, probably because the volumetric soil moisture (33–46 %) was within a plateau region for root and microbial activities. The enhancement in heterotrophic respiration with soil warming in our study suggests that global warming will accelerate the loss of carbon from forested peatlands more seriously than other upland forest soils. On the other hand, soil warming did not cause significant change in the temperature sensitivity, Q10, (2.79 and 2.74 determined using hourly efflux data for unwarmed- and warmed-trenched, respectively), but increased their basal respiration rate at 0 °C (0.93 and 1.21 μmol m−2 s−1, respectively). Results suggest that if we predict the soil heterotrophic respiration rate in future warmer environment using the current relationship between soil temperature and heterotrophic respiration, the rate can be underestimated.
Publisher
Copernicus GmbH
Reference39 articles.
1. Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., and Kirk, G. J. D.: Carbon losses from all soils across England and Wales 1978-2003, Nature, 437, 245–248, https://doi.org/10.1038/nature04038, 2005. 2. Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the global soil respiration record, Nature, 464, 579–582, https://doi.org/10.1038/nature08930, 2010. 3. Boone, R. D., Nadelhoffer, K. J., Canary, J. D., and Kaye, J. P.: Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 396, 570–572, 1998. 4. Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M., and Garrison, J. B.: Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest, Can. J. For. Res., 23, 1402–1407, 1993. 5. Bronson, D. R., Gower, S. T., Tanner, M., Linder, S., and Van Herk, I.: Response of soil surface CO2 flux in a boreal forest to ecosystem warming, Global Change Biol., 14, 856–867, https://doi.org/10.1111/j.1365-2486.2007.01508.x, 2008.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|