Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China

Author:

Qiao Xue,Guo Hao,Tang Ya,Wang PengfeiORCID,Deng Wenye,Zhao Xing,Hu JianlinORCID,Ying Qi,Zhang HongliangORCID

Abstract

Abstract. The Sichuan Basin (SCB) is one of the regions suffering from severe air pollution in China, but fewer studies have been conducted for this region than for the more developed regions in eastern and northern China. In this study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model was used to quantify contributions from nine regions to PM2.5 (i.e., particulate matter, PM, with an aerodynamic diameter less than 2.5 µm) and its components in the 18 cities within the SCB in the winter (December  2014 to February 2015) and summer (June to August 2015). In the winter, citywide average PM2.5 concentrations are 45–126 µg m−3, with 21 %–51 % and 39 %–66 % being due to local and nonlocal emissions, respectively. In the summer, 15 %–45 % and 25 %–52 % of citywide average PM2.5 (14–31 µg m−3) are due to local and nonlocal emissions, respectively. Compared to primary PM (PPM), the inter-region transport of secondary inorganic aerosols (SIA), including ammonia, nitrate, and sulfate ions (NH4+, NO3-, and SO42-, respectively), and their gas-phase precursors are greater. The region to the east of SCB (R7, including central and eastern China and others) is the largest contributor outside the SCB, and it can contribute approximately 80 % of PM2.5 in the eastern, northeastern, and southeastern rims of the SCB but only 10 % in other SCB regions in both seasons. Under favorable transport conditions, regional transport of air pollutants from R7 could account for up to 35–100 µg m−3 of PM2.5 in each of the SCB cities in the winter. This study demonstrates that it is important to have joint emission control efforts among cities within the SCB and regions to the east in order to reduce PM2.5 concentrations and prevent high PM2.5 days for the entire basin.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3