Vertical profiles of NO<sub>2</sub>, SO<sub>2</sub>, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport

Author:

Wang YangORCID,Dörner SteffenORCID,Donner SebastianORCID,Böhnke Sebastian,De Smedt IsabelleORCID,Dickerson Russell R.ORCID,Dong Zipeng,He HaoORCID,Li ZhanqingORCID,Li Zhengqiang,Li Donghui,Liu DongORCID,Ren XinrongORCID,Theys Nicolas,Wang YuyingORCID,Wang YangORCID,Wang ZhenzhuORCID,Xu Hua,Xu JiweiORCID,Wagner Thomas

Abstract

Abstract. A multi-axis differential optical absorption spectroscopy (MAX-DOAS) instrument was deployed in May and June 2016 at a monitoring station (37.18∘ N, 114.36∘ E) in the suburban area of Xingtai, which is one of the most polluted cities in the North China Plain (NCP), during the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) experiment and Air chemistry Research In Asia (ARIAs) joint experiments to derive tropospheric vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols. Aerosol optical depths derived from MAX-DOAS were found to be consistent with collocated sun-photometer measurements. Also the derived near-surface aerosol extinction and HCHO mixing ratio agree well with the coincident visibility meter and in situ HCHO measurements, with mean HCHO near-surface mixing ratios of ∼3.5 ppb. Underestimations of MAX-DOAS results compared to in situ measurements of NO2 (∼60 %) and SO2 (∼20 %) are found expectedly due to vertical and horizontal inhomogeneity of trace gases. Vertical profiles of aerosols and NO2 and SO2 are reasonably consistent with those measured by a collocated Raman lidar and aircraft spirals over the station. The deviations can be attributed to differences in sensitivity as a function of altitude and substantial horizontal gradients of pollutants. Aerosols, HCHO and CHOCHO profiles typically extended to higher altitudes (with 75 % integrated column located below ∼1.4 km) than NO2, SO2 and HONO did (with 75 % integrated column below ∼0.5 km) under polluted conditions. Lifted layers were systematically observed for all species (except HONO), indicating accumulation, secondary formation or long-range transport of the pollutants at higher altitudes. Maximum values routinely occurred in the morning for NO2, SO2 and HONO but occurred at around noon for aerosols, HCHO and CHOCHO, mainly dominated by photochemistry, characteristic upslope–downslope circulation and planetary boundary layer (PBL) dynamics. Significant day-to-day variations are found for all species due to the effect of regional transport and changes in synoptic pattern analysed with the backward propagation approach based on HYSPLIT trajectories. Low pollution was often observed for air masses from the north-west (behind cold fronts), and high pollution was observed from the southern areas such as industrialized Wu'an. The contribution of regional transport for the pollutants measured at the site during the observation period was estimated to be about 20 % to 30 % for trace gases and about 50 % for aerosols. In addition, agricultural burning events impacted the day-to-day variations in HCHO, CHOCHO and aerosols. It needs to be noted that although several MAX-DOAS measurements of trace gases and aerosols in the NCP area have been reported in previous studies, this study is the first work to derive a comprehensive set of vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols from measurements of one MAX-DOAS instrument. Also, so far, the validation of MAX-DOAS profile results by comparison with various surface in situ measurements as well as profile measurements from lidar and aircraft is scarce. Moreover, the backward propagation approach for characterizing the contributions of regional transport of pollutants from different regions was applied to the MAX-DOAS results of trace gases and aerosols for the first time.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference118 articles.

1. Aliwell, S. R., Van Roozendael, M., Johnston, P. V., Richter, A., Wagner, T., Arlander, D. W., Burrows, J. P., Fish, D. J., Jones, R. L., Tørnkvist, K. K., Lambert, J.-C., Pfeilsticker, K., and Pundt, I.: Analysis for BrO in zenith-sky spectra: An intercomparison exercise for analysis improvement, J. Geophys. Res., 107, ACH 10-1–ACH 10-20, https://doi.org/10.1029/2001JD000329, 2002.

2. Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, 1996.

3. Benish, S., He, H., Ren, X., Roberts, S., Li Z., Wang, F., Wang, Y., Zhang F., Shao, M., Lu, S., Pfister, G., Flock, F., and Dickerson, R.: Observations of Nitrogen Oxides and Volatile Organic Compounds over the North China Plain and Impact on Ozone Formation, J. Geophys. Res., in preparation, 2019.

4. Bobrowski, N., Honninger, G., Galle, B., and Platt, U.: Detection of bromine monoxide in a volcanic plume, Nature, 423, 273–276, 2003.

5. Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3