Tracking city CO<sub>2</sub> emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, Germany

Author:

Pillai DhanyalekshmiORCID,Buchwitz MichaelORCID,Gerbig ChristophORCID,Koch Thomas,Reuter MaximilianORCID,Bovensmann HeinrichORCID,Marshall JuliaORCID,Burrows John P.ORCID

Abstract

Abstract. Currently, 52 % of the world's population resides in urban areas and as a consequence, approximately 70 % of fossil fuel emissions of CO2 arise from cities. This fact, in combination with large uncertainties associated with quantifying urban emissions due to lack of appropriate measurements, makes it crucial to obtain new measurements useful to identify and quantify urban emissions. This is required, for example, for the assessment of emission mitigation strategies and their effectiveness. Here, we investigate the potential of a satellite mission like Carbon Monitoring Satellite (CarbonSat) which was proposed to the European Space Agency (ESA) to retrieve the city emissions globally, taking into account a realistic description of the expected retrieval errors, the spatiotemporal distribution of CO2 fluxes, and atmospheric transport. To achieve this, we use (i) a high-resolution modelling framework consisting of the Weather Research Forecasting model with a greenhouse gas module (WRF-GHG), which is used to simulate the atmospheric observations of column-averaged CO2 dry air mole fractions (XCO2), and (ii) a Bayesian inversion method to derive anthropogenic CO2 emissions and their errors from the CarbonSat XCO2 observations. We focus our analysis on Berlin, Germany using CarbonSat's cloud-free overpasses for 1 reference year. The dense (wide swath) CarbonSat simulated observations with high spatial resolution (approximately 2 km  ×  2 km) permits one to map the city CO2 emission plume with a peak enhancement of typically 0.8–1.35 ppm relative to the background. By performing a Bayesian inversion, it is shown that the random error (RE) of the retrieved Berlin CO2 emission for a single overpass is typically less than 8–10 Mt CO2 yr−1 (about 15–20 % of the total city emission). The range of systematic errors (SEs) of the retrieved fluxes due to various sources of error (measurement, modelling, and inventories) is also quantified. Depending on the assumptions made, the SE is less than about 6–10 Mt CO2 yr−1 for most cases. We find that in particular systematic modelling-related errors can be quite high during the summer months due to substantial XCO2 variations caused by biogenic CO2 fluxes at and around the target region. When making the extreme worst-case assumption that biospheric XCO2 variations cannot be modelled at all (which is overly pessimistic), the SE of the retrieved emission is found to be larger than 10 Mt CO2 yr−1 for about half of the sufficiently cloud-free overpasses, and for some of the overpasses we found that SE may even be on the order of magnitude of the anthropogenic emission. This indicates that biogenic XCO2 variations cannot be neglected but must be considered during forward and/or inverse modelling. Overall, we conclude that a satellite mission such as CarbonSat has high potential to obtain city-scale CO2 emissions as needed to enhance our current understanding of anthropogenic carbon fluxes, and that CarbonSat-like satellites should be an important component of a future global carbon emission monitoring system.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference57 articles.

1. Ahmadov, R., Gerbig, C., Kretschmer, R., Koerner, S., Neininger, B., Dolman, A. J., and Sarrat, C.: Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmospherebiosphere model, J. Geophys. Res.-Atmos., 112, D22107, https://doi.org/10.21029/22007JD008552, 2007.

2. Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P., and Ramonet, M.: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2, Biogeosciences, 6, 807–817, https://doi.org/10.5194/bg-6-807-2009, 2009.

3. Amstel, A. Van, Olivier, J. and Janssen, L.: Analysis of differences between national inventories and an Emissions Database for Global Atmospheric Research (EDGAR), Environ. Sci. Policy, 2, 275–293, https://doi.org/10.1016/S1462-9011(99)00019-2, 1999.

4. Beck, V., Koch, T., Kretschmer, R., Marshall, J., Ahmadov, R., Gerbig, C., Pillai, D., and Heimann, M.: The WRF Greenhouse Gas Model (WRF-GHG), Technical Report No. 25, Max Planck Institute for Biogeochemistry, Jena, Germany, available at: http://www.bgc-jena.mpg.de/bgc-systems/index.shtml, 2011.

5. Berezin, E. V., Konovalov, I. B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., Beekmann, M., and Schulze, E.-D.: Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns, Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3