Fluorescent biological aerosol particle measurements at a tropical
high-altitude site in southern India during the southwest
monsoon season
-
Published:2016-08-04
Issue:15
Volume:16
Page:9805-9830
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Valsan A. E., Ravikrishna R., Biju C. V., Pöhlker C.ORCID, Després V. R., Huffman J. A.ORCID, Pöschl U.ORCID, Gunthe S. S.
Abstract
Abstract. An ultraviolet aerodynamic particle sizer (UV-APS) was continuously operated for the first time during two seasons to sample the contrasting winds during monsoon and winter to characterize the properties of fluorescent biological aerosol particles (FBAPs), at a high-altitude site in India. Averaged over the entire monsoon campaign (1 June–21 August 2014), the arithmetic mean number and mass concentrations of coarse-mode (> 1 µm) FBAPs were 0.02 cm−3 and 0.24 µg m−3, respectively, which corresponded to ∼ 2 and 6 % of total aerosol loading, respectively. Average FBAP number size distribution exhibited a peak at ∼ 3 µm, which is attributed to the fungal spores, as supported by scanning electron microscope (SEM) images, and these results are consistent with previous studies made for FBAPs. During 11 weeks of measurements the variability of the total coarse-mode particle number (TAP) concentration was high compared to that observed in FBAP number concentrations. The TAP and FBAP number concentrations measured at this site were strongly dependent on changes in wind direction and rainfall. During periods of westerly/southwesterly winds with heavy persistent rainfall, the TAP and FBAP concentrations exhibited very low values (1.3 and 0.005 cm−3, respectively) with no significant diurnal variations, whereas during periods of northerly winds with scattered rainfall FBAPs exhibited relatively high concentration values (0.05 cm−3) with pronounced diurnal variations, which were strongly coupled with diurnal variations in meteorological parameters. The campaign-averaged FBAP number concentrations were shown to correlate with daily patterns of meteorological parameters and were positively correlated with relative humidity (RH; R2 = 0.58) and negatively with temperature (R2 = 0.60) and wind speed (R2 = 0.60). We did not observe any significant positive correlation with precipitation as reported by previous researchers from selected areas. These measurement results confirm the fact that the ratio of PBAPs to TAP is strongly dependent on particle size and location and thus may constitute a significant proportion of total aerosol particles.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference127 articles.
1. Adhikari, A., Sen, M. M., Gupta-Bhattacharya, S., and Chanda, S.: Air-borne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations, Sci. Total Environ., 326, 123–141, https://doi.org/10.1016/j.scitotenv.2003.12.007, 2004. 2. Adhikari, A., Reponen, T., Grinshpun, S. A., Martuzevicius, D., and LeMasters, G.: Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study, Environ. Pollut., 140, 16–28, https://doi.org/10.1016/j.envpol.2005.07.004, 2006. 3. Agranovski, V. and Ristovski, Z. D.: Real-time monitoring of viable bioaerosols: capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles, J. Aerosol Sci., 36, 665–676, https://doi.org/10.1016/j.jaerosci.2004.12.005, 2005. 4. Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P. J., and Morawska, L.: Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress, J. Aerosol Sci., 34, 1711–1727, https://doi.org/10.1016/s0021-8502(03)00191-5, 2003. 5. Agranovski, V., Ristovski, Z. D., Ayoko, G. A., and Morawska, L.: Performance evaluation of the UVAPS in measuring biological aerosols: Fluorescence spectra from NAD(P)H coenzymes and riboflavin, Aerosol Sci. Technol., 38, 354–364, https://doi.org/10.1080/02786820490437505, 2004.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|