Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings

Author:

Ern ManfredORCID,Trinh Quang ThaiORCID,Kaufmann MartinORCID,Krisch IsabellORCID,Preusse Peter,Ungermann JörnORCID,Zhu YajunORCID,Gille John C.,Mlynczak Martin G.,Russell III James M.ORCID,Schwartz Michael J.ORCID,Riese MartinORCID

Abstract

Abstract. Sudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing.We investigate the boreal winters from 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before or around the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when the wind has reversed from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward-directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and meridional shape of the background wind field, indicating that a pure zonal average view sometimes is a too strong simplification for the strongly perturbed conditions during the evolution of SSWs.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference120 articles.

1. Albers, J. R. and Birner, T.: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014.

2. Alexander, M. J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C., Eden, T., Francis, G., Halvorson, C., Hannigan, J., Khosravi, R., Kinnison, D., Lee, H., Massie, S., Nardi, B., Barnett, J., Hepplewhite, C., Lambert, A., and Dean, V.: Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder Observations, J. Geophys. Res., 113, D15S18, https://doi.org/10.1029/2007JD008807, 2008.

3. Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S. D., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T., Sigmond, M., Vincent, R., and Watanabe, S.: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010.

4. Angot, G., Keckhut, P., Hauchecorne, A., and Claud, C.: Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44° N), J. Geophys. Res., 117, D21102, https://doi.org/10.1029/2012JD017631, 2012.

5. Bailey, S. M., Thurairajah, B., Randall, C. E., Holt, L., Siskind, D. E., Harvey, V. L., Venkataramani, K., Hervig, M. E., Rong, P., and Russell III, J. M.: A multi tracer analysis of thermosphere to stratosphere descent triggered by the 2013 Stratospheric Sudden Warming, Geophys. Res. Lett., 41, 5216–5222, https://doi.org/10.1002/2014GL059860, 2014.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3