Incorporating genomic information and predicting gene expression patterns in a simplified biogeochemical model

Author:

Wang P.,Burd A. B.,Moran M. A.,Hood R. R.,Coles V. J.,Yager P. L.

Abstract

Abstract. We present results from a new marine plankton model that combines selective biogeochemical processes with genetic information. The model allows for phytoplankton to adapt to a changing environment by invoking different utilization pathways for acquisition of nutrients (nitrogen and phosphorus) in response to concentration changes. The simulations use simplified environmental conditions represented by a continuously stirred tank reactor, which is populated by 96 different types of phytoplankton that differ in their physiological characteristics and nutrient uptake/metabolism genes. The results show that the simulated phytoplankton community structure is conceptually consistent with observed regional and global phytoplankton biogeography, the genome content from the dominant types of phytoplankton reflects the imposed environmental constraints, and the transcription of the gene clusters is qualitatively simulated according to the environmental changes. The model shows the feasibility of including genomic knowledge into a biogeochemical model and is suited to understanding and predicting changes in marine microbial community structure and function, and to simulating the biological response to rapid environmental changes.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3