Early Holocene cold snaps and their expression in the moraine record of the eastern European Alps

Author:

Braumann Sandra M.ORCID,Schaefer Joerg M.ORCID,Neuhuber Stephanie M.,Lüthgens Christopher,Hidy Alan J.,Fiebig Markus

Abstract

Abstract. Glaciers preserve climate variations in their geological and geomorphological records, which makes them prime candidates for climate reconstructions. Investigating the glacier–climate system over the past millennia is particularly relevant first because the amplitude and frequency of natural climate variability during the Holocene provides the climatic context against which modern, human-induced climate change must be assessed. Second, the transition from the last glacial to the current interglacial promises important insights into the climate system during warming, which is of particular interest with respect to ongoing climate change. Evidence of stable ice margin positions that record cooling during the past 12 kyr are preserved in two glaciated valleys of the Silvretta Massif in the eastern European Alps, the Jamtal (JAM) and the Laraintal (LAR). We mapped and dated moraines in these catchments including historical ridges using beryllium-10 surface exposure dating (10Be SED) techniques and correlate resulting moraine formation intervals with climate proxy records to evaluate the spatial and temporal scale of these cold phases. The new geochronologies indicate the formation of moraines during the early Holocene (EH), ca. 11.0 ± 0.7 ka (n = 19). Boulder ages along historical moraines (n = 6) suggest at least two glacier advances during the Little Ice Age (LIA; ca. 1250–1850 CE) around 1300 CE and in the second half of the 18th century. An earlier advance to the same position may have occurred around 500 CE. The Jamtal and Laraintal moraine chronologies provide evidence that millennial-scale EH warming was superimposed by centennial-scale cooling. The timing of EH moraine formation coincides with brief temperature drops identified in local and regional paleoproxy records, most prominently with the Preboreal Oscillation (PBO) and is consistent with moraine deposition in other catchments in the European Alps and in the Arctic region. This consistency points to cooling beyond the local scale and therefore a regional or even hemispheric climate driver. Freshwater input sourced from the Laurentide Ice Sheet (LIS), which changed circulation patterns in the North Atlantic, is a plausible explanation for EH cooling and moraine formation in the Nordic region and in Europe.

Funder

Marshallplan-Jubiläumsstiftung

OeAD-GmbH

Österreichischen Akademie der Wissenschaften

National Science Foundation

Universität für Bodenkultur Wien

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3