The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems

Author:

Arsenault Kristi R.ORCID,Kumar Sujay V.,Geiger James V.,Wang Shugong,Kemp Eric,Mocko David M.,Beaudoing Hiroko KatoORCID,Getirana AugustoORCID,Navari MahdiORCID,Li Bailing,Jacob Jossy,Wegiel Jerry,Peters-Lidard Christa D.ORCID

Abstract

Abstract. The effective applications of land surface models (LSMs) and hydrologic models pose a varied set of data input and processing needs, ranging from ensuring consistency checks to more derived data processing and analytics. This article describes the development of the Land surface Data Toolkit (LDT), which is an integrated framework designed specifically for processing input data to execute LSMs and hydrological models. LDT not only serves as a preprocessor to the NASA Land Information System (LIS), which is an integrated framework designed for multi-model LSM simulations and data assimilation (DA) integrations, but also as a land-surface-based observation and DA input processor. It offers a variety of user options and inputs to processing datasets for use within LIS and stand-alone models. The LDT design facilitates the use of common data formats and conventions. LDT is also capable of processing LSM initial conditions and meteorological boundary conditions and ensuring data quality for inputs to LSMs and DA routines. The machine learning layer in LDT facilitates the use of modern data science algorithms for developing data-driven predictive models. Through the use of an object-oriented framework design, LDT provides extensible features for the continued development of support for different types of observational datasets and data analytics algorithms to aid land surface modeling and data assimilation.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3