Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes

Author:

Wang Linlin,Liu Junkai,Gao Zhiqiu,Li Yubin,Huang Meng,Fan Sihui,Zhang Xiaoye,Yang Yuanjian,Miao ShiguangORCID,Zou Han,Sun YeleORCID,Chen Yong,Yang Ting

Abstract

Abstract. We investigated the interactions between the air pollutants and the structure of the urban boundary layer (UBL) over Beijing by using the data mainly obtained from the 325 m meteorological tower and a Doppler wind lidar during 1–4 December 2016. Results showed that the pollution episodes in this period could be characterized by low surface pressure, high relative humidity, weak wind, and temperature inversion. Compared with a clean daytime episode that took place on 1 December, results also showed that the attenuation ratio of downward shortwave radiation was about 5 %, 24 % and 63 % in afternoon hours (from 12:00 to 14:00 local standard time, LST) on 2–4 December, respectively, while for the net radiation (Rn) attenuation ratio at the 140 m level of the 325 m tower was 3 %, 27 % and 68 %. The large reduction in Rn on 4 December was not only the result of the aerosols, but also clouds. Based on analysis of the surface energy balance at the 140 m level, we found that the sensible heat flux was remarkably diminished during daytime on polluted days and even negative after sunrise (about 07:20 LST) till 14:00 LST on 4 December. We also found that heat storage in the urban surface layer played an important role in the exchange of the sensible heat flux. Owing to the advantages of the wind lidar having superior spatial and temporal resolution, the vertical velocity variance could capture the evolution of the UBL well. It clearly showed that vertical mixing was negatively related to the concentrating of pollutants, and that vertical mixing would also be weakened by a certain quantity of pollutants, and then in turn worsened the pollution further. Compared to the clean daytime on 1 December, the maximums of the boundary layer height (BLH) decreased about 44 % and 56 % on 2–3 December, when the average PM2.5 (PM1) concentrations in afternoon hours (from 12:00 to 14:00 LST) were 44 (48) µg m−3 and 150 (120) µg m−3. Part of these reductions of the BLH was also contributed by the effect of the heat storage in the urban canopy.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3