Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study

Author:

Gani ShahzadORCID,Bhandari Sahil,Seraj Sarah,Wang Dongyu S.ORCID,Patel Kanan,Soni Prashant,Arub Zainab,Habib Gazala,Hildebrandt Ruiz LeaORCID,Apte Joshua S.ORCID

Abstract

Abstract. Delhi, India, routinely experiences some of the world's highest urban particulate matter concentrations. We established the Delhi Aerosol Supersite study to provide long-term characterization of the ambient submicron aerosol composition in Delhi. Here we report on 1.25 years of highly time-resolved speciated submicron particulate matter (PM1) data, including black carbon (BC) and nonrefractory PM1 (NR-PM1), which we combine to develop a composition-based estimate of PM1 (“C-PM1” = BC + NR-PM1) concentrations. We observed marked seasonal and diurnal variability in the concentration and composition of PM1 owing to the interactions of sources and atmospheric processes. Winter was the most polluted period of the year, with average C-PM1 mass concentrations of ∼210 µg m−3. The monsoon was hot and rainy, consequently making it the least polluted (C-PM1 ∼50 µg m−3) period. Organics constituted more than half of the C-PM1 for all seasons and times of day. While ammonium, chloride, and nitrate each were ∼10 % of the C-PM1 for the cooler months, BC and sulfate contributed ∼5 % each. For the warmer periods, the fractional contribution of BC and sulfate to C-PM1 increased, and the chloride contribution decreased to less than 2 %. The seasonal and diurnal variation in absolute mass loadings were generally consistent with changes in ventilation coefficients, with higher concentrations for periods with unfavorable meteorology – low planetary boundary layer height and low wind speeds. However, the variation in C-PM1 composition was influenced by temporally varying sources, photochemistry, and gas–particle partitioning. During cool periods when wind was from the northwest, episodic hourly averaged chloride concentrations reached 50–100 µg m−3, ranking among the highest chloride concentrations reported anywhere in the world. We estimated the contribution of primary emissions and secondary processes to Delhi's submicron aerosol. Secondary species contributed almost 50 %–70 % of Delhi's C-PM1 mass for the winter and spring months and up to 60 %–80 % for the warmer summer and monsoon months. For the cooler months that had the highest C-PM1 concentrations, the nighttime sources were skewed towards primary sources, while the daytime C-PM1 was dominated by secondary species. Overall, these findings point to the important effects of both primary emissions and more regional atmospheric chemistry on influencing the extreme particle concentrations that impact the Delhi megacity region. Future air quality strategies considering Delhi's situation in both a regional and local context will be more effective than policies targeting only local, primary air pollutants.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3