Evaluating the carbon sequestration potential of volcanic soils in southern Iceland after birch afforestation

Author:

Hunziker Matthias,Arnalds Olafur,Kuhn Nikolaus J.

Abstract

Abstract. Afforestation is a strategy to sequester atmospheric carbon in the terrestrial system and to enhance ecosystem services. Iceland's large areas of formerly vegetated and now degraded ecosystems therefore have a high potential to act as carbon sinks. Consequently, the ecological restoration of these landscape systems is part of climate mitigation programmes supported by the Icelandic government. The aim of this study was to explore the change in the soil organic carbon (SOC) pools and to estimate the SOC sequestration potential during the re-establishment of birch forest on severely degraded land. Differently aged afforested mountain birch sites (15, 20, 25 and 50 years) were compared to sites of severely degraded land, naturally growing remnants of mountain birch woodland and grasslands which were re-vegetated using fertilizer and grass seeds 50 years ago. The soil was sampled to estimate the SOC stocks and for physical fractionation to characterize the quality of the SOC. The results of our study show that the severely degraded soils can potentially sequester an additional 20 t C ha−1 (0–30 cm) to reach the SOC stock of naturally growing birch woodlands. After 50 years of birch growth, the SOC stock is significantly lower than that of a naturally growing birch woodland, suggesting that afforested stands could sequester additional SOC beyond 50 years of growth. The SOC fractionation revealed that at all the tested sites most of the carbon was stored in the <63 µm fraction. However, after 50 years of birch growth on severely degraded soils the particulate organic matter (POM) fraction was significantly enriched most (+12 t POM-C ha−1) in the top 30 cm. The study also found a doubling of the dissolved organic carbon (DOC) concentration after 50 years of birch growth. Therefore and due to the absence of any increase in the tested mineral-associated SOC fractions, we assume that the afforestation process evokes a carbon deposition in the labile SOC pools. Consequently, parts of this plant-derived, labile SOC may be partly released into the atmosphere during the process of stabilization with the mineral soil phases in the future. Our results are limited in their scope since the selected sites do not fully reflect the heterogeneity of landscape evolution and the range of soil degradation conditions. As an alternative, we suggest using repeated plot measurements instead of space-for-time substitution approaches for testing C changes in severely degraded volcanic soils. Our findings clearly show that detailed measurements on the SOC quality are needed to estimate the SOC sequestration potential of restoration activities on severely degraded volcanic soils, rather than only measuring SOC concentration and SOC stocks.

Publisher

Copernicus GmbH

Subject

Soil Science

Reference74 articles.

1. Aalde, H., Gonzalez, P., Gytarsky, M., Krug, T., Kurz, W. A., Ogle, S., Raison, J., Schoene, D., Ravandranath, N. H., Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K.: Forest Land, in: IPCC Guidelines for National Greenhouse Gas Inventories Volume 4 Agriculture, Forestry and Other Land Use, IGES, Hayama, Kanagawa, Japan, 1–83, 2006.

2. Ágústsdóttir, A. M.: Revegetation of eroded land and possibilities of carbon sequestration in Iceland, Nutr. Cycl. Agroecosys., 70, 241–247, 2004.

3. Aradóttir, Á., Svavarsdóttir, K., Jonsson, T. H., and Gudbergsson, G.: Carbon accumulation in vegetation and soils by reclamation of degraded areas, Iceland Agr. Sci. 13, 99–113, 2000.

4. Aradóttir, Á. L.: Population biology and stand development of birch (Betula pubescens Ehrh.) on disturbed sites in Iceland, PhD Dissertation, Texas A&amp;M University, Texas, 1991.

5. Aradóttir, Á. L.: Restoration of birch and willow woodland on eroded areas, in: Effects of Afforestation on Ecosystems, edited by: Halldorsson, G., Oddsdottir, E. S., and Eggertsson, O., Landscape and Rural Development, 67–74, TemaNord 2207:508 (c) Nordic Council of Ministers Copenhagen, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3