Transcriptional activities of methanogens and methanotrophs vary with methane emission flux in rice soils under chronic nutrient constraints of phosphorus and potassium

Author:

Sheng Rong,Chen Anlei,Zhang Miaomiao,Whiteley Andrew S.,Kumaresan Deepak,Wei Wenxue

Abstract

Abstract. Nutrient status in soil is crucial for the growth and development of plants which indirectly or directly affect the ecophysiological functions of resident soil microorganisms. Soil methanogens and methanotrophs can be affected by soil nutrient availabilities and plant growth, which in turn modulate methane (CH4) emissions. Here, we assessed whether deficits in soil-available phosphorus (P) and potassium (K) modulated the activities of methanogens and methanotrophs in a long-term (20 year) experimental system involving limitation in either one or both nutrients. Results showed that a large amount of CH4 was emitted from paddy soil at rice tillering stage (flooding) while CH4 flux was minimum at ripening stage (drying). Compared to soils amended with NPK fertiliser treatment, the soils without P input significantly reduced methane flux rates, whereas those without K input did not. Under P limitation, methanotroph transcript copy number significantly increased in tandem with a decrease in methanogen transcript abundance, suggesting that P-deficiency-induced changes in soil physio-chemical properties, in tandem with rice plant growth, might constrain the activity of methanogens, whereas the methanotrophs might be adaptive to this soil environment. In contrast, lower transcript abundance of both methanogen and methanotrophs were observed in K-deficient soils. Assessments of community structures based upon transcripts indicated that soils deficient in P induced greater shifts in the active methanotrophic community than K-deficient soils, while similar community structures of active methanogens were observed in both treatments. These results suggested that the population dynamics of methanogens and methanotrophs could vary along with the changes in plant growth states and soil properties induced by nutrient deficiency.

Funder

Chinese Academy of Sciences Key Project

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3