What distinguishes 100-year precipitation extremes over central European river catchments from more moderate extreme events?

Author:

Ruff FlorianORCID,Pfahl StephanORCID

Abstract

Abstract. Historical extreme flooding events in central European river catchments caused high socioeconomic impacts. Previous studies have analysed single events in detail but have not focused on a robust analysis of the underlying extreme precipitation events in general, as historical events are too rare for a robust assessment of their generic dynamical causes. This study tries to fill this gap by analysing a set of realistic daily 100-year large-scale precipitation events over five major European river catchments with the help of operational ensemble prediction data from the ECMWF. The dynamical conditions during such extreme events are investigated and compared to those of more moderate extreme events (20 to 50 year); 100-year precipitation events are generally associated with an upper-level cutoff low over central Europe in combination with a surface cyclone southeast of the specific river catchment. The 24 h before the event is decisive for the exact location of this surface cyclone, depending on the location and velocity of the upper-level low over western Europe. The difference between 100-year and more moderate extreme events varies from catchment to catchment. Dynamical mechanisms such as an intensified upper-level cutoff low and surface cyclone are the main drivers distinguishing 100-year events in the Oder and Danube catchments, whereas thermodynamic mechanisms such as a higher moisture supply in the lower troposphere east of the specific river catchment are more relevant in the Elbe and Rhine catchments. For the Weser and Ems catchment, differences appear in both dynamical and thermodynamic mechanisms.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3