The transient variation of the complexes of the low latitude ionosphere within the equatorial ionization anomaly region of Nigeria

Author:

Rabiu A. B.ORCID,Ogunsua B. O.ORCID,Fuwape I. A.,Laoye J. A.

Abstract

Abstract. The quest to find an index for proper characterization and description of the dynamical response of the ionosphere to external influences and its various internal irregularities has led to the study of the day to day variations of the chaoticity and dynamical complexity of the ionosphere. This study was conducted using Global Positioning System (GPS) Total Electron Content (TEC) time series, measured in the year 2011, from 5 GPS receiver stations in Nigeria which lies within the Equatorial Ionization Anomaly region. The nonlinear aspect of the TEC time series were obtained by detrending the data. The detrended TEC time series were subjected to various analyses for phase space reconstruction and to obtain the values of chaotic quantifiers which are Lyapunov exponents LE, correlation dimension, and Tsallis entropy for the study of dynamical complexity. The results show positive Lyapunov exponents for all days which indicate chaoticity of the ionosphere with no definite pattern for both quiet and disturbed days. However values of LE were lower for the storm period compared to its nearest relative quiet periods for all the stations. Considering all the days of the year the daily/transient variations show no definite pattern for each month but day to day values of Lyapunov exponent for the entire year show a wavelike semiannual variation pattern with lower values around March, April, September and October, a change in pattern which demonstrates the self-organized critical phenomenon of the system. This can be seen from the correlation dimension with values between 2.7 and 3.2 with lower values occurring mostly during storm periods demonstrating a phase transition from higher dimension during the quiet periods to lower dimension during storms for most of the stations. The values of Tsallis entropy show similar variation pattern with that of Lyapunov exponent with a lot of agreement in their comparison, with all computed values of Lyapunov exponent correlating with values of Tsallis entropy within the range of 0.79 to 0.82. These results show that Lyapunov quantifiers can be used together as indices in the study of the variations of the dynamical complexity of the ionosphere. The presence of chaos and high variations in the dynamical complexity, even at quiet periods in the ionosphere may be due to the internal dynamics and inherent irregularities of the ionosphere which exhibit non-linear properties. However, this inherent dynamics may be complicated by external factors like geomagnetic storms. This may be the main reason for the drop in the values of Lyapunov exponent and Tsallis entropy during storms. The results also show a strong interplay between determinism and stochasticity, as the ionosphere shows its response to changes in solar activities and in its internal dynamics. The dynamical behavior of the ionosphere throughout the year as described by these quantifiers, were discussed in this work.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3