Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodeling and machine learning

Author:

Schaaf AlexanderORCID,Bond Clare E.ORCID

Abstract

Abstract. In recent years, uncertainty has been widely recognized in geosciences, leading to an increased need for its quantification. Predicting the subsurface is an especially uncertain effort, as our information either comes from spatially highly limited direct (1-D boreholes) or indirect 2-D and 3-D sources (e.g., seismic). And while uncertainty in seismic interpretation has been explored in 2-D, we currently lack both qualitative and quantitative understanding of how interpretational uncertainties of 3-D datasets are distributed. In this work, we analyze 78 seismic interpretations done by final-year undergraduate (BSc) students of a 3-D seismic dataset from the Gullfaks field located in the northern North Sea. The students used Petrel to interpret multiple (interlinked) faults and to pick the Base Cretaceous Unconformity and Top Ness horizon (part of the Middle Jurassic Brent Group). We have developed open-source Python tools to explore and visualize the spatial uncertainty of the students' fault stick interpretations, the subsequent variation in fault plane orientation and the uncertainty in fault network topology. The Top Ness horizon picks were used to analyze fault offset variations across the dataset and interpretations, with implications for fault throw. We investigate how this interpretational uncertainty interlinks with seismic data quality and the possible use of seismic data quality attributes as a proxy for interpretational uncertainty. Our work provides a first quantification of fault and horizon uncertainties in 3-D seismic interpretation, providing valuable insights into the influence of seismic image quality on 3-D interpretation, with implications for deterministic and stochastic geomodeling and machine learning.

Funder

Royal Society of Edinburgh

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3